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Abstract

This paper evaluates the finite-sample performance of categorical-time versus dynamic specifications
for estimating treatment effect trajectories in short experimental panels. Using Monte Carlo simulations
and STAR data, we show that autoregressive and log-trend models substantially improve precision and
statistical power when treatment effects evolve smoothly, reducing path RMSE by 30-40 percent relative
to categorical-time specifications. These efficiency gains arise from restricting the conditional mean rather
than modeling error covariance. However, categorical-time models exhibit greater robustness to irregular
treatment paths. The results highlight a fundamental bias-variance tradeoff, with specification choice
depending on the plausibility of dynamic structure and inferential objectives.

Keywords:
JEL:

1 Introduction

Randomized experiments (RCTs) have become central to empirical economics, providing credible causal
evidence upon interventions ranging from developmental to educational and labor market programs (Duflo,
Glennerster, and Kremer, 2007; Banerjee and Duflo, 2009; Angrist and Pischke, 2009; Athey and Imbens,
2017). Increasingly, these experiments collect outcomes repeatedly over time, generating short panel datasets
with modest number of units and multiple follow-up waves. Repeated measurements are intended to improve
precision, document the evolution of treatment effects and distinguish short-run impacts from longer-run per-
sistence or fade-out (McKenzie, 2012). Despite this, the standard empirical practice treats time categorically,
estimating a separate treatment effect for each follow-up period.

The categorical time approach is flexible and transparent, but it is statistically costly in short panels.
Estimating multiple treatment-time interactions consumes degrees of freedom, inflates variance and can
produce erratic period-to-period estimates that may obscure true smooth treatment trajectories (Wooldridge,
2010). In field experiments where sample sizes are often constrained by cost and logistics (Muralidharan and
Sundararaman, 2011; Bloom et al., 2013), outcomes such as achievement, earnings or health status exhibit
strong temporal dependence. As a result, experiments that are well powered to detect endpoint effects may
remain underpowered to characterize how treatment evolved over time.

When outcomes are observed repeatedly on a common scale, such as within wave standardized measures or
change from baseline observations, this persistence can be modeled explicitly rather than treated implicitly
or ignored. This allows researchers to replace high-dimensional set of period specific treatment effects
with a small number of economically interpretable parameters governing outcome dynamics. Autoregressive
specifications capture persistence and convergence while smooth trend models summarize nonlinear treatment
trajectories consistent with learning curves or diminishing returns (Ben-Porath, 1967; Cunha and Heckman,
2007). Imposing such structure entails a bias vs. variance trade-off, while dynamic models restrict the space
of possible trajectories, they can deliver efficiency gains when restrictions are appropriate.



This paper studies the potential efficiency of imposing parsimonious dynamic structure on treatment
effect trajectories in randomized short panels. We focus on two classes of dynamic specifications com-
monly motivated by economic behavior, autoregressive models that capture outcome persistence and smooth
log-trend models that summarize nonlinear treatment evolution. These are contrasted with the standard
categorical-time specifications. The estimand of interest are the implied treatment effects on outcome tra-
jectories defined as the difference in the expected outcomes between treatment and control at measurement
wave, these are functions of underlying parameters rather than separate period-specific coeflicients. The
comparison is therefore one of representation and efficiency, not identification or estimand choice.

For this, we first conduct a Monte Carlo study calibrated to sample sizes, panel lengths and tempo-
ral dependence patterns observed in experimental conditions. The simulations are designed to assess how
alternative representations of the same treatment effect trajectory perform in finite samples, both when
dynamic restrictions are approximately current and when misspecified. We evaluate estimators using root
mean squared error of the estimated treatment path and power for endpoint inference. Second, we provide
an empirical subsampling exercise based on project STAR (Krueger, 1999), a canonical education experi-
ment with four waves of achievement data. This exercise examines the finite-sample stability of competing
specifications under resampling from an unknown data-generating process.

The results show that dynamic specifications can yield substantial efficiency gains relative to categorical
time models when outcomes exhibit temporal structure. By pooling information across waves through
economically motivated restrictions, dynamic models improve precision and power in short panels, enabling
more informative inference about the timing and persistence of treatment effects. These gains are achieved
without relying on large-sample approximations or complex covariance structures and are pronounced in
sample sizes encountered in pilot studies and small-scale experiments. We provide systematic evidence
on how alternative representations of treatment effect trajectories perform in finite samples under realistic
experimental conditions. By isolating the bias—variance trade-off inherent in dynamic modeling, the paper
offers practical guidance for applied researchers working with short experimental panels.

The remainder of the paper proceeds as follows. Section 2 presents the econometric framework, defining
the estimands and outlining the assumptions underlying categorical-time and dynamic specifications. Sec-
tion 3 describes the Monte Carlo simulation design, including the data-generating processes and estimation
strategies. Section 4 provides an empirical illustration. Section 5 discusses implications for experimental
practice and limitations, and Section 6 concludes.

2 Econometric Framework

2.1 Setup and Estimands

Consider a randomized controlled trial with N units indexed by ¢ = 1, ..., N. Each unit is observed at
T measurement waves indexed by ¢ = 1, ..., T, with treatment assignment D; € {0,1} fixed over time.
Let Y;; denote the observed outcome at wave t. We focus on settings in which outcomes are observed on
a comparable scale across waves, either through within-wave standardization or normalization relative to
the first observed measurement. The primary estimand of interest is the treatment effect on the outcome
trajectory, defined at each wave t as,

A = E[Yiy(1) = Y3 (0)]

Where, Y;;(d) denotes the potential outcomes under treatment status d. In experimental applications,
{At}thl are estimated directly as period specific coefficients with particular focus on endpoint treatment
effect Ap. In dynamic models, {A;} are implied functions of a small number of structural parameters gov-
erning outcome persistence or trend dynamics. Our focus is on comparing the finite-sample performance of
these alternative representations of the same underlying estimand. Randomization ensures that in expecta-
tion treatment assignment is independent of potential outcome trajectories. Throughout, we abstract from
missingness and attrition to isolate the efficacy of alternative mean specifications under ideal experimental
conditions.



2.2 Categorical Time Specification

The standard approach in experimental panel data with repeated measurements treats time categorically,
allowing treatment effects to vary freely across measurement waves,

(1) Y;;t:)\t"f'TtDi"FEit; t:L ey T

Here, \; are period fixed effects, 74 captures the treatment effect at wave t. This specification is highly
flexible and transparent, imposing no restrictions on the shape of the treatment trajectory. However, when
T is small and outcomes are serially correlated estimating each 74 can result in high variance and unstable
estimates across adjacent ¢t (Wooldridge, 2010).

2.3 Dynamic Specifications

We contrast the categorical-time model with dynamic specifications that impose structure on outcome evo-
lution. Keeping with the empirical contexts motivating this study, we omit period fixed effects in these
models. This restriction is appropriate when outcomes are expressed as within-wave standardized measures
or as changes relative to baseline measurement, so that common wave-level shifts are mechanically removed.
Throughout the dynamic specifications, we omit period fixed effects \; because outcomes are normalized to
be comparable across waves (e.g., within-wave standardization or change-from-baseline), so common shifts
are absorbed by construction and do not contribute to identifying treatment trajectories.

2.3.1 Autoregressive Models

We first consider autoregressive specifications that model outcomes as persistent states. With 1" observed
waves, the AR models are defined over T" — 1 within-unit transitions, treating the first observation as an
initial condition. For t =2,...,T,

(2) Y =(¢p+kD;)Yi4—1+7D; + uy

The parameter ¢ captures the outcome persistence in the control group, while x allows treatment to
modify persistence. The parameter 7 represents a treatment-induced shift in the conditional outcome level.
Stationarity is ensured if |¢| < 1 and |¢ 4+ k| < 1. Although, 7 and x are not themselves period-specific
treatment effects, they jointly determine the treatment effect on the outcome trajectory. Define the treatment
effect on the levels at wave t as Ay=E (Y;:|D; = 1) —=E (Y;#|D; = 0). Under the AR specification and the
normalization Ay = 0,

Ar=(p+r) A1 +7, t=2,...,T

Thus, the implied treatment trajectory is a deterministic function of ¢, k, 7T with endpoint effect

T2
Ap=r7 Z (¢ + k)
=0

This yields a closed form expression for the treatment effect at each wave. Thus, the AR model targets
the same set of estimands {A;} as the categorical time model, through a parsimonious dynamic structure.
This specification formalizes a common intuition in experimental work, past outcomes are predictive of future
outcomes, even when baseline measurements are imperfect or non-comparable across units (Duflo, Dupas,
and Kremer, 2011; Andrabi et al., 2011).

To clarify the source of dynamic treatment effects, we also consider restricted AR variants that isolate
(i) a level-only specification (k = 0) and (ii) a moderation-only specification (7 = 0). These restrictions
correspond to whether treatment primarily shifts the conditional mean level or primarily alters persistence.
This decomposition is used in the simulation study and mirrored in the empirical illustration.



2.3.2 Log-Trend Models

We also consider smooth trend models that summarize nonlinear treatment trajectories. Let the first obser-
vation serve as a common reference point and define outcome changes as Y;; — Y;1. Fort =2,..., T,

(3) Yie — Yin = Bolog(t) + doD; + 0 (D; - log(t)) + vit

The coefficient By captures the average evolution of outcomes in the control group, while 6 measures
whether treatment accelerates or amplifies this trajectory. This functional form is motivated by learning and
adjustment processes that exhibit early gains followed by diminishing returns (Ben-Porath, 1967; Cunha and
Heckman, 2007). As with the AR model, the implied treatment effects {A;} are smooth functions of small
number of parameters rather than unrestricted period-specific coefficients.

Ay =6g+0log(t), t=1,...,T

2.4 FError Structure and Identification

In all specifications, we allow for within-unit correlation in the error terms using standard covariance struc-
tures, including independence, compound symmetry, and autoregressive dependence (Wooldridge, 2010; Ver-
beke and Molenberghs, 2000). In short panels, correct specification of the conditional mean is often more
consequential for efficiency than precise modeling of the residual covariance, particularly when outcomes ex-
hibit strong persistence or smooth trajectories (McKenzie, 2012; Andrabi et al., 2011). Identification relies
on random assignments and the assumption that attrition and measurement error do not become differential
by treatment status over time. Under these conditions, common wave-level shocks affect precision but do
not bias treatment comparisons (Imbens and Rubin, 2015). We interpret differences across specifications as
reflecting trade-offs between flexibility and efficiency rather than changes in the underlying estimand.

Random assignment also distinguishes this setting from observational dynamic panel models that motivate
instrumental-variable estimators such as Arellano and Bond (1991). In observational panels, lagged outcomes
become endogenous after removing unit fixed effects, requiring deeper lags as instruments. In experimental
panels, treatment is orthogonal to the shock process governing outcome dynamics by design, so the core
identification concern addressed by difference-GMM does not arise for treatment effect estimation. Remaining
issues are therefore primarily finite-sample and efficiency-related rather than identification-driven (Arellano
and Bond, 1991; Wooldridge, 2010; Imbens and Rubin, 2015).

2.5 Existing Practices

Dynamic specifications formalize intuitions that are already implicit in much experimental work. Baseline
outcomes are often viewed as informative but imperfect proxies for latent ability or state variables, and
repeated measurements are collected precisely because outcomes are expected to evolve systematically over
time (Duflo, Dupas, and Kremer, 2011; McKenzie, 2012). Our framework makes this structure explicit when
repeated, comparable measurements are available, allowing treatment effects on trajectories to be estimated
more efficiently.

2.6 Within-Wave Normalization

Outcomes are standardized within wave prior to estimation for each period ¢,

Y = Yit — pot
oot

Where po; and og; are the mean and standard deviation of control group in period ¢. This normalization
serves two purposes. First, it ensures treatment effects A; in standard deviation units, ensuring measurement
comparability across samples, grades, specifications and aligning effect magnitudes with standard practices
in experimental and educational literatures. Second, within-wave absorbs common period effects by con-
struction. Any aggregate shifts in the outcome levels due to test scaling, grade difficulty or general secular
trends are removed mechanically. As a result, the outcome for the control group is zero for each period.



Explicit period fixed effects which usually control for these shifts are not required by construction in this
normalized outcome space. All temporal evolution in the models reflects relative dynamics in treatment
effects rather than aggregate time trends. In this setting, the autoregressive and smooth-trend restrictions
characterize the persistence or attenuation of treatment effects over time, not changes in outcome scales.
Normalization therefore simplifies interpretation of the treatment effect path {A;} and ensures all estimands
of interest are defined on a common comparable scale which is policy relevant.

3 Monte Carlo Simulation Design

We study finite-sample performance in randomized short panels by comparing the categorical-time repre-
sentation of dynamic treatment effects to parsimonious dynamic specifications that impose structure on
outcome evolution. The simulation design is calibrated to experimental settings in which researchers observe
a balanced panel with some modest T' (4, 8) and moderate-to-small N (50, 150). The scientific object
to recover is the treatment effect trajectory and an endpoint effect. Our focus is explicitly on efficiency
and bias-variance trade-offs induced by mean restrictions rather than identification which is assumed by
construction in all designs.

3.1 Data and Estimand

For each Monte Carlo replication, we generate a balanced panel of {Y}t};‘rzl for units ¢ = 1, ..., N under
randomized assignment D; € {0,1}, with P (D; =1) = 1. Outcomes are simulated on a comparable scale
across periods, consistent with within-wave normalization or baseline-reference changes, so that the treatment
effect path is well defined and comparable across t. The estimand is the period-specific average treatment
effect, A,i=E[Y;:(1) = Yie(0)], t =1,...,T.

3.2 Data Generating Processes

We consider a set of data-generating processes (DGPs) designed to span plausible forms of temporal depen-
dence and treatment effect evolution in experimental panels. The DGPs differ along two dimensions, the
structure of the conditional mean which determines treatment effect trajectory and the within-unit depen-
dence in the error process which determines how information accumulates across time within a unit. The
conceptual decomposition used in this econometric framework can differ either by imposing restrictions on
the mean evolution or by modeling the residual covariance more flexibly.

The categorical time mean, we generate outcomes according to equation (1) with a monotone treatment
path A; that increases smoothly across periods so that Ar is approximately 0.2 standard deviations. This
magnitude reflects policy relevant effect sizes commonly targeted in education and development experiments.
The error term ¢;; is generated under two dependence structures, independent and identically distributed
and AR (1) dependence (geometrically decaying correlation within a unit over time).

The autoregressive mean DGP as defined in equation (2) generates outcomes that are persistent states
and treatment may alter both level and persistence. In this DGP, the conditional mean depends on lagged
outcomes and the treatment trajectory {A;} is implied by the autoregressive recursion. This DGP is intended
to represent settings in which outcomes exhibit genuine state dependence and interventions operate through
persistence, which is a common empirical feature of repeated test scores, earnings and health indices.

Finally, for smooth trend mean, we generate treatment effects using the non-linear equation (3) mo-
tivated by trajectories with rapid gains followed by diminishing marginal effects. The mean structure is
parameterized so that the implied endpoint effect is approximately 0.2 standard deviations.

3.3 Models Estimated

For each simulated dataset of sizes N (50, 150) x T'(4, 8), we estimate a fixed set of competing specifications
regardless of the true DGP. This ’fit all models to all DGPs’ design is essential for interpreting the results as an
evaluation of efficiency and robustness. The performance gains when a model’s restrictions are approximately
correct and losses when misspecified are revealed.



The specifications include categorical time estimated by ordinary least squares, categorical time model
with AR (1) error structure (GLS), a log-trend model estimated on baseline-referenced changes, and autore-
gressive models estimated on within-unit transitions, including restricted variants that isolate level-only and
persistence-moderated channels. Each specification produces an implied treatment effect path A;.p. For
categorical time models, A; is obtained directly as estimated time-treatment interaction per period. For dy-
namic models, A; is computed as the model-implied function of estimated structural parameters (recursively
for autoregressive specifications and closed form for the log-trend specification). All models are evaluated
against the same estimand arrived through different specifications.

3.4 Performance Criteria

We evaluate finite sample performance using accuracy of the entire treatment-effect trajectory and accuracy
of the endpoint effect. First, trajectory accuracy is summarized by the root mean squared error over the
treatment path,

) T 1/2
RMSEp0n = (T > (A - At)2>
t=1

This criterion penalizes both systematic bias and sampling variance over the full trajectory and is therefore
well suited to comparing flexible categorical models to parsimonious dynamic restrictions.
Second, endpoint accuracy is summarized by the absolute endpoint deviation,

AET = ‘KT — AT|

Because applied work often emphasizes a final follow-up impact, AEr provides an interpretable com-
plement to RMSE,.n, distinguishing models that fit the overall path well from models that recover the
endpoint particularly accurately.

For each (N, T, DGP) design cell, we report distributional summaries of these metrics across replications
(e.g., medians and upper quantiles). We additionally summarize comparative performance via the frequency
with which a model attains the lowest out-of-sample path error across design cells, which provides a compact
representation of which restrictions dominate across plausible experimental environments.

4 Project STAR — Empirical Experiments

The empirical analysis based on Project STAR is organized into two experiments. They share a common
motivation to understand finite sample performance of alternative representations in canonical short panels.
Treating these designs separately is to ensure calibrated power is different from empirical stability.

4.1 Classical Power

In the first experiment, we construct a classical power analysis by using STAR to calibrate a pseudo-data
generating process and then evaluating rejection probabilities under a controlled sequence of alternatives.
The STAR panel provides two objects required for this, an empirical estimate of baseline treatment effect
trajectory shape across the four grade level measurements (Tstar = 4), and an empirical distribution of
within-student error vectors that preserves the observed time-series dependence.

Formally, let 5; denote an estimated treatment effect shape with 53 = 0 and 54 # 0, obtained from a base-
line categorical time estimated on the balanced STAR panel (Ngrar = 2668 unique students over Tspar =
4 measurement waves). For any targeted endpoint effect magnitude d4 (in standard deviation units), de-

fine a scaled treatment path, A;(d4) = (g—;‘) S¢, t =1, ..., 4, so that Ay (d4) = d4 by construction.

Pseudo panels of size N (50, 150, 250, 400, 600) are then generated as follows. Treatment is assigned as
D; ~ Bernoulli(0.5), we then draw a residual vector e}, = (€1, €2, €;3, €,4) by sampling with replacement
from the empirical distribution of STAR residual vectors at the student level. Outcomes are then constructed
as Y = Ay (04) Di+el,, t =1,...,4. This preserves the empirical time dependence in the error process while
imposing a controlled treatment trajectory with endpoint d4. We then estimate each competing specification



on the pseudo-panel and test the endpoint null Hy : Ay = 0 using Wald standard errors. Power at (N, d4) is
computed as the Monte Carlo rejection probability at a two-sided 5% level. Holding the error structure close
to the empirical STAR environment, the experiment is designed to identify which specification delivers highest
probability of detecting an endpoint effect as signal increases (04 is increased in steps, 0.0 : 0.05: 0.2 SD).

4.2 STAR Subsampling Experiment

The second experiment uses STAR, directly to re-estimate treatment effects using the competing specifications
through repeated subsample draws from the balanced panel (Nsrar = 2668) of size N (50, 150, 250, 400,
600). For each subsample and each model, we compute the model’s endpoint estimate ﬁt and its associated
test statistic for Hy : A4 = 0. Aggregating across repeated subsamples yields a rejection frequency. Since
the true data-generating process for STAR is unknown and is not manipulated, this rejection frequency
is not a calibrated power curve. It is a measure of finite-sample stability and sensitivity. It reflects how
each specification behaves under realistic data conditions and sampling variation. A specification may
perform well in pseudo-experimental conditions when its restrictions are approximately satisfied but exhibit
weaker stability under subsampling if the true trajectory or mean dynamics are not well captured by those
restrictions.

The subsampling experiment complements the STAR-calibrated power curves by shifting the question
to empirical robustness; how stable is inference when DGP is unknown? Taken together, the experiments
separate efficiency gains achievable under plausible dynamic structure from the costs of imposing structure
when the empirical environment only partially conforms to the restrictions.

5 Results

5.1 Recovery of Treatment Effect Trajectories

Across all design cells, autoregressive specifications outperform other specifications in terms of path accuracy.
Using median RMSE over the treatment-effect trajectory as the primary performance metric, autoregressive
models achieve the lowest error in many design environments (Figure 1). AR-level specifications attain the
lowest median RMSE in over half of all N, T, DGP cells, with AR-parent models also performing strongly.
Smooth log-trend models outperform categorical-time specifications in several settings, but do not match
the consistency of autoregressive models. Table 1, summarizes RMSE over treatment effect trajectory across
specifications for the Monte Carlo simulations.

Table 1: Monte Carlo performance across dynamic specifications

Model Median RMSE (Path)  90th pct. RMSE (Path) Median |[Ap — Ap|  90th pct. |Ap — Ar|
TE OLS 0.198 0.341 0.176 0.458
TE GLS AR(1) 0.198 0.341 0.176 0.458
Log OLS 0.164 0.293 0.153 0.401
AR Level 0.132 0.262 0.141 0.387
AR Parent 0.139 0.289 0.168 0.457

Relative to the categorical-time OLS benchmark, dynamic mean restrictions reduce median path RMSE
by approximately 30-40 percent in environments with outcome persistence or smooth treatment evolution.
These reductions are comparable to the improvement one would obtain from a substantial increase in sample
size, holding the specification fixed. In contrast, modeling serial correlation in the error term alone via GLS
applied to a categorical time mean delivers negligible improvements over OLS, indicating that efficiency gains
arise primarily from restricting the mean structure, not from refining the covariance estimator.

Using the median absolute deviation of the endpoint effect |Ar — Ar| as a metric, dynamic specifications
again outperform categorical-time models in most environments. Autoregressive models achieve the lowest
endpoint error in roughly half of the design cells, with log-trend models performing well when the true
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Figure 1: RMSE Boxplot for treatment effect trajectory across specifications and DGPs

treatment path is smooth. Categorical time models rarely minimize endpoint error, despite their flexibility,
reflecting the variance costs of estimating multiple period-specific parameters in short panels.

Performance patterns are stable across sample sizes and panel lengths. Increasing Nreduces RMSE
for all specifications, as expected, but does not alter the relative ranking of models. Similarly, increasing
T improves overall precision but amplifies the advantage of dynamic restrictions by allowing models to exploit
temporal dependence more effectively. Importantly, no single specification dominates uniformly, when the
true treatment path departs sharply from the imposed dynamic structure, categorical time models become
competitive. This reflects a bias—variance trade-off rather than estimator failure. Because all specifications
are evaluated using Wald tests based on their own variance estimators, rejection probabilities incorporate
the joint effects of finite-sample bias and standard-error accuracy. In short panels (T = 4,8), standard bias
corrections are unstable and rarely used in practice, and any residual bias would manifest as size or power
distortions, which we do not observe.

5.2 Power for Endpoint Inference

Figure 2 and 3 report rejection probabilities for tests of the null hypothesis Hy : Ap = 0 under STAR-
calibrated pseudo data, where the treatment effect trajectory is rescaled to deliver a known endpoint effect
A4 while preserving the empirical error structure of the STAR experiment. This design isolates the power
consequences of alternative mean specifications under empirically realistic noise.

Two findings emerge clearly. First, autoregressive mean specifications dominate in terms of power for
endpoint inference across all sample sizes and effect magnitudes. Both AR-level and AR-parent models
exhibit substantially higher rejection rates than categorical-time specifications at moderate signal strengths,
with differences that widen as N increases. For example, at A4 = 0.15 and N = 400, autoregressive models
achieve rejection rates exceeding 60 percent, compared to approximately 40 percent for log-trend models and
roughly 35 percent for categorical-time OLS and GLS.

Second, modeling serial correlation in the error term alone does not materially improve power. GLS
estimation with AR (1) disturbances closely tracks OLS with categorical time effects across all designs,
reinforcing the conclusion from the Monte Carlo RMSE results that efficiency gains arise from restricting
the conditional mean rather than from covariance modeling.

The ordering of specifications is stable across sample sizes and converges monotonically as N grows.
At small sample sizes, power is uniformly low for all models, but autoregressive specifications maintain
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Figure 2: Power curves for endpoint inference over various sample sizes and signal strengths calibrated from
estimates using the STAR dataset.

a consistent advantage even in these settings. As N increases, the gap between dynamic and categorical
specifications becomes more pronounced, indicating that dynamic mean restrictions exploit information that
categorical time models fail to aggregate efficiently.

5.3 Empirical Subsampling in STAR

We complement the STAR-calibrated power analysis with two empirical subsampling exercises conducted
directly on the original STAR data. Unlike the pseudo data experiments above, these exercises do not
impose a known alternative and therefore do not deliver power in the formal sense. Instead, they assess
the finite-sample stability of inference under repeated random sampling when the true treatment path is
unknown.

Figure 5 reports rejection frequencies for tests based on the average treatment effect over periods 24,
while Figure 4 reports rejection frequencies for tests of the endpoint effect. In both cases, subsamples of
size N € {100, 150, 250,400,600} are drawn repeatedly from the original balanced STAR panel (Ngrar =
2668, TsTar = 4), and inference is conducted using the same specifications considered above.

Two patterns stand out. First, categorical time specifications exhibit higher rejection rates than dynamic
mean models, particularly when inference targets the average treatment effect over the trajectory. For
example, when testing the mean effect over periods 2-4, categorical time OLS rejects at rates exceeding 70
percent in larger subsamples, while autoregressive models reject at rates below 20 percent. A similar, though
attenuated, pattern appears for endpoint inference.

Second, the relative ordering across specifications differs sharply from that observed in the STAR-
calibrated power experiments. In contrast to the pseudo data results where autoregressive models dom-
inate uniformly dynamic specifications appear conservative in the empirical subsampling exercises, while
categorical time models are substantially more responsive to sampling variation in the observed data.

The subsampling exercises do not condition on a fixed alternative and therefore conflate statistical power



Asymptotic Power Ordering for Endpoint Inference
STAR-calibrated pseudo DGP; T = 4; balanced panels

N: 150 N: 250

0.8

0.6

N
~

0.2

N: 400 N: 600

Power (two-sided Wald test, 5%)
P

o
o

0.4

0.2

0.0
0.10 0.15 0.20 0.10 0.15 0.20
Target endpoint effect A4

model —e— TEOLS -4 TEGLSAR(1) - - LogOLS --+- ARLevel —=— AR Parent

Figure 3: Power ordering for inference when treatment effects are 0.1, 0.15 and 0.2 SD at endpoint. AR
models dominate other specifications.

with sensitivity to unmodeled features of the realized treatment path. Categorical time models remain
agnostic about the temporal structure of treatment effects and can accommodate irregular or non-monotonic
patterns that are present in the STAR data but suppressed by dynamic mean restrictions. As a result, they
exhibit higher empirical rejection rates when the signal shape is uncertain, even though they are less efficient
when the underlying trajectory is smooth and known up to scale.

Dynamic mean restrictions deliver substantial efficiency gains and higher true power when the treatment
path is well approximated by a low-dimensional structure, as demonstrated in the STAR-calibrated pseudo
data. However, categorical time specifications offer greater robustness to unknown or irregular signal shapes,
which manifests as higher rejection rates under empirical subsampling. These findings underscore that
differences across specifications reflect distinct bias—variance trade-offs rather than violations of asymptotic
theory.

6 Discussion and Conclusion

This paper examines how alternative specifications for treatment effect dynamics perform in short experi-
mental panels when inference targets both entire trajectories and endpoint effects. We study a constrained
set of widely used specifications under controlled Monte Carlo designs and empirically grounded experiments
calibrated to the STAR data.

First, imposing parsimonious dynamic structure on the conditional mean delivers substantial efficiency
gains when treatment effects evolve smoothly over time. Across Monte Carlo designs and STAR-calibrated
pseudo—data, autoregressive specifications dominate categorical-time models in terms of path recovery and
statistical power for endpoint inference. These gains arise from restricting the mean structure rather than
from modeling serial correlation in the error term, a distinction that is often blurred in applied work.

Second, the advantage of dynamic specifications is not universal. Empirical subsampling in STAR, where

10
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Figure 4: Empirical robustness of treatment effect recovery in random subsamples drawn from the STAR
balanced panel.

the true treatment path is unknown and potentially irregular reveals that categorical-time models exhibit
greater sensitivity to realized variation in the data. This reflects a familiar bias—variance trade-off, dynamic
restrictions improve efficiency when approximately correct but suppress local features of the signal when
misspecified. Importantly, this divergence highlights the distinct inferential objectives captured by power
under a known alternative versus stability under unknown signal shape.

Third, these results clarify the practical implications of specification choice in short panels. When the
goal is precise estimation or powerful testing of a smooth treatment trajectory, dynamic mean restrictions
are highly effective. When the objective is robustness to unknown or non-smooth dynamics, categorical-time
specifications may be preferable despite their higher variance. No single specification dominates across all
environments, and the appropriate choice depends on the inferential target and the plausibility of dynamic
structure.

The broader contribution of this paper is to disentangle these trade-offs in a setting that mirrors canonical
experimental panels. By combining Monte Carlo designs with STAR-calibrated pseudo data and empirical
subsampling, we provide a unified framework for understanding how specification choices map into efficiency,
power, and robustness. While our analysis is intentionally focused, the results highlight for short panels,
restrictions on the treatment-effect path are first-order determinants of finite-sample performance and should
be chosen with explicit reference to the underlying empirical context.
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Empirical subsampling: average treatment effect over periods 2—4 (STAR)
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Figure 5: Empirical robustness of average trajectory treatment effect recovery in random subsamples drawn
from the STAR balanced panel.
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