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Abstract

Standardized test scores are signals in college admissions, yet the measurement properties of these in-

struments receive little empirical attention. This paper uses large language models (LLMs) as stable

external benchmarks to audit item-level changes in the SAT math section from 2011 to 2023. Estimating

a pooled item response theory model on 1291 math items evaluated by 20 LLMs, I find a downward

drift in item difficulty beginning in 2017, with discrimination remaining broadly stable. This shift moves

test information towards lower ability regions, reducing signal precision at the upper tail where selective

institutions screen applicants. These diagnostics suggest that where the SAT is most informative has

changed over time, with implications for efficiency of student institution matching and the distributional

consequences of admissions policies.
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1 Introduction

Standardized admissions tests such as the SAT have long served as quantitative signals of academic pre-

paredness in U.S. college admissions. Literature identifies test scores as noisy measures of latent skill and

studies how institutions weight, down weight, or ignore these signals in admissions and scholarship decisions

(Cunha and Heckman, 2007; Cunha et al., 2010). At the same time, test scores are found to predict long-run

educational and labor-market outcomes, making them central inputs into selective screening (Rothstein,

2004; Chetty et al., 2023; Friedman et al., 2025).

Since COVID-19, many institutions expanded test-optional or test-free admissions policies. Recent work

documents that these changes altered application behavior, enrollment patterns, and the composition of

admitted students, particularly at selective institutions (Sacerdote et al., 2025; Avery et al., 2025). However,

this literature largely treats the SAT as a stable measurement instrument. Institutions either observe scores

or do not, but little empirical work evaluates the measurement properties of the test itself. Specifically,

where and how precisely it measures ability have changed over time. If the test becomes less informative

in the ability ranges relevant for selective screening, then any admissions process that uses test scores faces

different precision tradeoffs even holding policy fixed.

Existing work focuses primarily on whether scores are required or submitted and how participation

decisions shape admissions outcomes. Conditional on the test existing and being observed, how informative

is the signal? If the SAT’s measurement properties evolve over time, then comparisons of pre- and post–test-

optional outcomes conflate policy effects with changes in signal quality. This issue is particularly important

in the context of generative AI, which has made other components of the application package including

essays, recommendation letters, and portfolios, easier to polish and potentially game (Spence, 1973; Frankel

and Kartik, 2019; Cui et al., 2025). Standardized tests may play a more central role in the future admissions.

It is therefore critical to understand the informativeness of the SAT as a measurement instrument.

Evolving test properties alter the signal in education markets, influencing intergenerational mobility

and labor-market outcomes (Rothstein, 2004; Chetty et al., 2020, 2023). This paper contributes to AI-

based measurement in applied economics by using large language models (LLMs) as a common external

benchmark to recover item-level parameter changes in a proprietary high-stakes standardized test. Other

assessments document concurrent math performance declines (e.g., NAEP Grade 12 math proficiency reached

historic lows in 2024; PISA U.S. math declined by 13 points from 2018-2022) (National Center for Education

Statistics, 2024; Organisation for Economic Co-operation and Development, 2023). The American College

Testing (ACT) which also tests for college readiness like the SAT has reported similar declining trends in

composite scores (ACT, Inc., 2025). These changes motivate a closer analysis of the measurement properties
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over time of one such standardized test, the SAT Math section.

The psychometric literature on item parameter drift (IPD) and differential item functioning (DIF) pro-

vides a conceptual framework for understanding how item properties evolve over time and across subpop-

ulations (Wells et al., 2002; Holland and Wainer, 1993). This however requires access to item-level human

response data, which are proprietary for high-stakes tests such as the SAT. The LLM-benchmark approach

acts as an external reference variant of the IPD analysis where a stable synthetic population substitutes for

the matched human reference group in traditional drift detection procedures.

This AI-based benchmarking approach fixes a set of open-source LLMs as synthetic test-takers to diagnose

changes in SAT Math items from 2011 to 2023. Estimating a pooled item response theory (IRT) model on

LLM responses yields item-level difficulty, discrimination, and guessing parameters on a common latent scale

(Birnbaum, 1968; Lord, 1980). Using these recovered IRT parameters, I examine how the informativeness of

SAT Math scores evolved over time and what cohort ability distributions are required to reconcile observed

population SAT score moments. In settings where item-level human response data are proprietary, LLMs

offer an external measurement audit of the test instrument itself.

The identifying assumption is that the LLM benchmark is stable over time. All items are evaluated

simultaneously by the same LLMs under a fixed prompting and decoding protocol (see Online Appendix I

for prompt details). So, cross-year variation in response patterns reflects item-level differences rather than

benchmark drift. To assess whether LLM-implied difficulty trends generalize to human test-takers, I conduct

a supplementary validation exercise in which university business college freshmen answer a stratified sample

of items drawn from items in years 2011, 2015, 2019, and 2023. This exercise is not powered to estimate

item parameters. Instead, it provides a directional check on whether the rank ordering of difficulty implied

by the LLM benchmark aligns with human performance.

The results show a downward trend in LLM-implied item difficulty beginning in 2016, with comparatively

modest changes in discrimination. Mechanically, this shift moves test information toward lower regions of the

ability scale (Lord, 1980). As a consequence, the SAT Math section becomes less precise in the upper tail,

reducing its capacity to discriminate among high-ability examinees, the region most relevant for selective

admissions. These findings are measurement diagnostics rather than causal estimates of policy effects.

However, they highlight how the informativeness of standardized tests has changed, AI tools providing a

novel lens for such measurement audits in the absence of proprietary human response data.
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2 Conceptual Framework

Observed SAT score distributions in a given year result from two components: (i) the cohort latent ability

distribution of test-takers, and (ii) the measurement technology in the given year that maps ability into

scores. Changes in observed scores year-on-year can reflect changes in student specific attributes such as

preparedness and composition, or test specific changes in measurement properties or some combination of

both. In this paper, I focus on changes in test measurement technology using AI as a common benchmarking

framework. Separating changes in measurement technology requires a benchmark external to the test-taking

population.

Let θi denote the latent math ability of test-taker i, and let Ft(θ) denote the test-taker ability distribution

in year t. The observed SAT Math score Sit ∈ [200, 800] is produced by a year-specific test technology Tt

applied to latent ability:

Sit = Tt(θi) + εit,E[εit|θi] = 0. (1)

where εit captures idiosyncratic measurement noise arising from factors such as test-day shocks, administra-

tion conditions, and other unobserved disturbances. The test technology Tt aggregates item-level response

function, each characterized by difficulty, discrimination, and guessing parameters into a scaled score via

year-specific scoring rules (Lord, 1980; Kolen and Brennan, 2014).

The empirical challenge is that item-level human response data for the SAT are proprietary. I address this

limitation by using LLMs as the external benchmark. Holding the model set and prompting fixed, I estimate

item parameters from LLM response patterns. The identifying assumption is that LLM capability on SAT

Math items is stable over the study period (all responses from the 20 LLMs were collected via Together

AI’s API within 2 days in October 2025), so that cross-year variation in estimated item parameters reflects

changes in the items rather than benchmark drift. Using a supplementary human validation exercise, I test

this assumption and find students exhibit a difficulty ordering concordant with the LLM-implied ranking.

Formally, let pmj denote the probability that model m answers item j correctly. Under a three-parameter

logistic (3PL) IRT model, this probability depends on model ability αm and item parameters (aj , bj , cj):

pmj = cj + (1− cj) ·
1

1 + exp[−aj(αm − bj)]
. (2)

Because all items are evaluated by the same models simultaneously, item parameters are identified on a

common latent scale without the need for cross-year linking (Kolen and Brennan, 2014). Year-over-year

trends in estimated difficulty parameters bj therefore capture changes in item characteristics relative to a

fixed benchmark, rather than changes in the benchmark itself.
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3 Methods

3.1 Item corpus

I compile SAT Math items from official paper based examinations between 2011–2023 from the internet

archives. Each item is collected along with administration year, form identifiers, and associated question

type which could be multiple-choice or numerical answer. The 2016 redesign reduced multiple-choice options

from five to four. I retain the option-count metadata to regularize the pseudo-guessing component of the

IRT model. Items with figures that could not be reliably reconstructed due to poor quality from archived

PDFs are excluded to avoid introducing unobserved variation in item presentation across years. Items were

excluded if the solution required extracting quantitative information from a figure that could not be reliably

represented in text. The final corpus contains 1,291 unique items, representing approximately 65% of the

expected item pool across all administered forms during 2011–2023, with annual coverage rates ranging from

58% to 73%.

3.2 LLM response collection

I evaluate M = 20 open-source large language models (LLMs) as synthetic examinees using a standardized

prompting and extraction protocol. For multiple-choice items, prompts include the question and response

options. Further, to assess response stability, I randomized option order, reprompt the question multiple

times (five) to assess order sensitivity and within-model variability. For numerical response items, prompts

request numeric answers and extract the output via regex constraints. All models are run with deterministic

decoding, that is, they are prompted with temperature set to 0.

As all items from 2011–2023 are evaluated by the same models under a fixed prompting protocol, cross-

year variation in response patterns reflects item-level differences under a constant benchmark rather than

changes in model capability. This design parallels recent work for diagnosing consequences of changing

signal quality in other screening contexts (Frankel and Kartik, 2019; Cui et al., 2025). A contamination

robustness check using paraphrased items confirms that LLM responses reflect problem-solving rather than

memorization of training data. For a full SAT form from 2011, 2015, 2019 and 2023, the overall accuracy on

original items (54.3%) and paraphrased items (54.0%) is nearly identical, with year-level differences ranging

from −1.8 to +1.9 percentage points. This pattern is inconsistent with memorization, which would predict

systematically higher accuracy on original items (Online Appendix G).

5



3.3 Pooled Bayesian IRT model

I estimate item parameters using a pooled Bayesian item response model. For multiple-choice items, I employ

a three-parameter logistic (3PL) specification with item discrimination ajt, difficulty bjt, and pseudo-guessing

cjt. For numerical answer response items, I impose cjt ≡ 0 (Fox, 2010). Pooling all items across years in

a single likelihood places item parameters on a common latent scale without cross-year linking, consistent

with IRT practice when a stable external benchmark is available (Birnbaum, 1968; Lord, 1980; Kolen and

Brennan, 2014).

Let ymjtr ∈ {0, 1} denote the scored response of an LLM model m on item j from year t on attempt r. Al-

though decoding is deterministic, response variation arises from option-order shuffling across attempts.Models

have been found to exhibit sensitivity to the position of correct answers, a phenomenon in LLM evaluation

(Zheng et al., 2023). The parameter αm therefore captures each model’s systematic tendency to answer

correctly—analogous to latent ability in human IRT, though it is not a cognitive construct. To capture

within-model variability from option-order effects, I allow attempt-specific effective ability:

αmr = αm + σrepεmr, εmr ∼ N (0, 1). (3)

Conditional on αmr, the probability of a correct response is given by,

Pjt(αmr) = cjt + (1− cjt)Λ(ajt(αmr − bjt)) , Λ(x) =
1

1 + e−x
. (4)

The likelihood therefore can be written as,

L(Θ | Y) =
∏
m

∏
j,t

∏
r

Pjt(αmr)
ymjtr [1− Pjt(αmr)]

1−ymjtr , (5)

where Θ collects all item and model parameters.

Posterior inference is implemented using Hamiltonian Monte Carlo using Turing.jl and posterior means

are provided as point estimates in Table 1 (Neal, 2011; Betancourt, 2017; Ge et al., 2018). Full prior specifi-

cations, convergence diagnostics, and robustness checks are provided in the Online Appendix B. Appendix B

also reports item characteristic curve validation, confirming that the monotonic ability-accuracy relationship

assumed by the 3PL holds in the LLM response data. This supports the use of IRT as a framework for

directional assessment of item properties, which is the goal of this analysis.
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3.4 Cohort recovery and test information

To connect the estimated measurement technology to observed score distributions, I recover year-specific

cohort ability distributions that reconcile LLM-implied item parameters with published College Board pop-

ulation level score moments. I parameterize latent math ability in year t as

θ ∼ N (µt, σ
2
t ), (6)

and recover (µt, σt) by simulated moment matching. Importantly, these are model-consistent latent parame-

ters on the LLM-defined IRT scale, not structural estimates of human ability. Their role is to reconcile item

parameters with observed score moments.

For a candidate (µ, σ), I simulate a large synthetic cohort, draw abilities from N (µ, σ2), generate item

responses using the estimated item parameters, apply year-specific scoring rules from official raw-to-scaled

score conversions, and compute simulated score moments (College Board Research, n.d.). Let Mobs
t denote

the vector of published score moments for year t and M̂t(µ, σ) the simulated moments. The objective uses

squared relative errors for scale comparability across moments:

Mobs
t =

(
s̄t, sd(st), Q0.25(st), Q0.50(st), Q0.75(st)

)
, (7)

err(m) =

(
msim −mobs

mobs

)2

, (8)

and minimizes

(µ̂t, σ̂t) = arg min
µ,σ>0

Lt(µ, σ), (9)

with

Lt(µ, σ) = wmean

(
err(s̄) + err(Q0.50)

)
+ wothers

(
err(sd) + err(Q0.25) + err(Q0.75)

)
. (10)

The chosen weighting scheme mirrors the priorities in the SAT scaling and equating process. The College

Board defines score meaning and interchangeability through the central region (mean and median) of the

score distribution, where scaled scores are stable across forms and administrations. Score precision in the

tails declines due to discrete raw-to-scaled mappings and concordance discontinuities. The objective function

therefore follows this logic by upweighting mean and median errors relative to other moments (College Board,

2017).
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wk =


4 k ∈ {mean,median},

1 k ∈ {SD, Q25, Q75}.
(11)

Since the raw-to-scaled score mapping (all individual level SAT scores are multiples of 10) is discrete and

incorporates redesign driven concordance discontinuities, the objective function is not smooth. Gradient-

based GMM procedures are therefore difficult to implement reliably, and I minimize the objective using the

Nelder–Mead simplex algorithm (Nelder and Mead, 1965). Online Appendix D reports sensitivity to an

alternative weighting scheme.

Test information. Given year-specific LLM-implied measurement technologies T̂t(·), I characterize score in-

formativeness using the test information function. For an item j in year t with parameters ϕjt = (ajt, bjt, cjt),

the probability of a correct response at ability θ under the three-parameter logistic (3PL) model is

Pjt(θ) = cjt + (1− cjt)Λ(ajt(θ − bjt)) , Λ(x) =
1

1 + e−x
. (12)

Item-level Fisher information is as defined in Hambleton and Swaminathan (1985):

Ijt(θ | ϕjt) =

[
P ′
jt(θ)

]2
Pjt(θ) [1− Pjt(θ)]

, (13)

and for a realized complete test form St ⊆ Jt where Jt is the item pool for year t, total information is

It(θ | St) =
∑
j∈St

Ijt(θ | ϕjt). (14)

Because the specific SAT Math form administered in year t is drawn from the available item pool, I report

expected test information under stratified uniform sampling without replacement. Let Jmcq
t and J ans

t denote

the multiple-choice and numerical answer item sets in a given year, with Nmcq,t and Nans,t available items

and nmcq,t and nans,t items appearing on a typical form. Before 2016, the SAT included 54 items (42

multiple-choice, 12 numerical) and since then it included 58 items (44 multiple-choice, 14 numerical) in one

complete test form. Expected test information is

E[It(θ)] =
nmcq,t

Nmcq,t

∑
j∈Jmcq

t

Ijt(θ) +
nans,t

Nans,t

∑
j∈J ans

t

Ijt(θ). (15)
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The implied standard error of measurement at ability θ is

SEt(θ) =
1√

E[It(θ)]
. (16)

Interpretation of recovered cohort parameters. The recovered (µ̂t, σ̂t) should not be interpreted as

estimates of true changes in human ability over time. Since the item difficulty drifts downward in the

LLM benchmark, reconciling these easier items with stable observed score distributions requires shifting the

cohort distribution leftward on the latent scale. The large numerical change in µ̂t therefore reflects the joint

identification of item and cohort parameters rather than a structural claim about test-taker preparedness.

Test information and SEt(θ) are driven by the item parameters themselves. The cohort parameters serve

only to locate policy-relevant ability thresholds such as θt0.90.

3.5 Precision diagnostics and misclassification

To translate precision into an economically interpretable object, I map SEt(θ) into a stylized misclassification

probability under a symmetric threshold rule. This metric captures the probability that measurement error

causes an examinee near a cutoff to be classified on the wrong side. It is intended as a descriptive diagnostic

linking changes in measurement precision to screening reliability rather than as a behavioral model. To

illustrate the mechanical implications, for a given admissions threshold θ∗, under some tolerance band δ > 0,

the misclassification probability is

Pmisclass,t(θ
∗, δ) ≈ 2× Φ

(
− δ

SEt(θ∗)

)
,

where Φ(·) is the standard normal CDF. From the recovered cohort distributions in Section 3.4, I set θ∗ to

the 90th percentile of each year’s cohort distribution, θt0.90, and evaluate misclassification probabilities for

δ = 0.5 on the latent ability scale, corresponding to approximately 15–30 SAT points depending on year.1

In addition, I anchor the ability threshold at a fixed high-ability point θ⋆ = θ20110.90 to isolate intensive-margin

changes in measurement precision from changes in cohort composition.

3.6 Human validation

To assess whether AI-implied difficulty trends generalize to human test-takers, I administer a stratified sample

of SAT Math items to university business college freshmen students. I draw 12 items using a fixed seed from

1The approximate SAT-point equivalent is δ × (sdobst /σ̂t), where sdobst is the published SAT Math standard deviation and
σ̂t is the recovered cohort standard deviation on the latent scale. With δ = 0.5, sdobst ≈ 100–115, and σ̂t ≈ 2.0–3.3 (Table 3),
this yields approximately 15–30 points where marginal decisions could be affected.
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each of four years (2011, 2015, 2019, and 2023), totaling 48 items. Items were presented in a fixed order

that was randomized across item years, so that year-blocks were mixed rather than sequential, administered

within a 70-minute session (approximately the same length as the SAT math section and time-per-question).

Participants were not informed of item year or the purpose of the exercise.

The validation is designed as a directional check rather than a fully powered item-calibration exercise.

The primary test is the Jonckheere-Terpstra test for ordinal data, which evaluates whether human accuracy

is stochastically increase across year groups under the null of identical distributions (Jonckheere, 1954). This

nonparametric test directly assesses whether the ordering implied by the LLM benchmark of declining diffi-

culty from 2011 to 2023 is concordant with human-experienced difficulty. A supplementary linear probability

model with student fixed effects provides interpretable effect sizes, these details are included in the Online

Appendix H.

4 Results

This section reports three measurement diagnostics implied by the AI-based IRT benchmark: (i) a downward

drift in item difficulty, (ii) the corresponding shift in where the test concentrates information along the latent

ability scale, and (iii) the resulting change in upper-tail precision, evaluated both within-year and at a fixed

high-ability anchor. Under standard IRT, items are most informative near their difficulty locations, so shifts

in the distribution of b translate directly into shifts in the test information function and standard errors of

measurement (Birnbaum, 1968; Lord, 1980). These changes are AI implied diagnostics of the measurement

properties of the SAT Math section rather than causal estimates of policy effects.

4.1 Item difficulty declines while discrimination remains broadly stable

Table 1 summarizes year-level means of discrimination (āt), difficulty (b̄t), and pseudo-guessing (c̄t), along

with item counts by format. Mean difficulty exhibits a downward shift after 2018: b̄t is positive through

2017 and becomes consistently negative from 2018 onward, reaching its lowest mean in 2022. In contrast,

discrimination remains in a relatively narrow band across years, indicating that items retain local differ-

entiating power even as their locations shift. Pseudo-guessing increases discontinuously in the post-2016

era, consistent with the change from five-option to four-option multiple-choice items and the corresponding

change in random-guess baselines. A contamination robustness check using paraphrased items confirms that

LLM responses reflect problem-solving rather than memorization of training data. For a full SAT form from

2011, 2015, 2019 and 2023, the overall accuracy on original items (54.3%) and paraphrased items (54.0%)

is nearly identical, with year-level differences ranging from −1.8 to +1.9 percentage points. This pattern
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Figure 1: This figure shows the trends in discrimination parameter a and difficulty parameter b over time,
comparing the full 20-model AI benchmark to an 8-model subset as a replication check. The trends illustrate
the downward shift in difficulty. The shaded portion represents the inter-quartile range. More details
regarding the 8-model replication are provided in the Online Appendix.

is inconsistent with memorization, which would predict systematically higher accuracy on original items.

(Online Appendix G).

Table 1: Year-level item-parameter summaries from the full AI benchmark (2011–2023).

Year N items N MCQ N numeric āt b̄t c̄t

2011 94 75 19 1.511 0.191 0.213
2012 139 114 25 1.489 0.149 0.214
2013 73 60 13 1.436 0.013 0.214
2014 128 104 24 1.398 -0.061 0.207
2015 69 56 13 1.353 0.134 0.210
2016 116 90 26 1.533 0.228 0.261
2017 81 65 16 1.530 0.254 0.259
2018 125 96 29 1.661 -0.737 0.260
2019 126 98 28 1.578 -0.567 0.265
2020 73 61 12 1.531 -0.838 0.255
2021 73 53 20 1.764 -0.793 0.267
2022 120 90 30 1.564 -1.373 0.266
2023 74 56 18 1.562 -0.738 0.261

Notes: āt, b̄t, and c̄t are means of the estimated 3PL item discrimination, difficulty, and pseudo-guessing parameters,
respectively, using the pooled AI benchmark. For numeric-response items, cj is fixed at zero in estimation; c̄t therefore reflects
the MCQ composition in year t. Parameter interpretation follows standard 3PL conventions (Birnbaum, 1968; Lord, 1980).

4.2 Where the SAT is most informative shifts left

The difficulty drift is shown in Table 1 while Figure 2 implies a shift in where the exam concentrates

information. Under IRT, information is maximized in neighborhoods of item difficulty, so a leftward shift
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Figure 2: Item-level Fisher information is computed using the standard 3PL information function It(θ)
(based on the 3PL probability and its derivative; see Equation 13). To translate item information into a
test-information curve, I compute the expected test information under stratified uniform sampling from the
year-t item pool. Sum It(θ) over all MCQ items and scale by the expected sampling rate nMCQ/NMCQ,
and analogously for numeric-response items, then add the two components as shown in Equation 15. Then
evaluate this expected test information on a dense ability grid (e.g., θ ∈ [−6, 6] in steps of 0.1) yielding It(θ)
for the full range of ability values. The vertical dashed lines indicate the 90th percentile ability
for each year. In 2011, the test information function provides substantial precision at the
90th percentile. By 2023, the leftward shift in item difficulty has reduced information at high
ability levels, leaving the 90th percentile in a region where the test is less informative.

in the b distribution moves the peak and mass of the test information function toward lower ability values

(Lord, 1980). Two diagnostics make this implication concrete without relying on figures.

First, within-year upper-tail precision depends on how far the 90th percentile of that year’s cohort

distribution lies from the region where items cluster. Table 3 reports the standard error of measurement

evaluated at θt0.90, the 90th percentile of each year’s recovered cohort distribution which is computed using

Equations 15 and 16. Second, to isolate intensive-margin changes from any year-to-year changes in cohort

composition, Table 2 presents the precision at a fixed high-ability anchor θ⋆ = θ20110.90 .

4.3 Upper-tail precision deteriorates at a fixed high-ability benchmark

Table 2 shows a post-2018 deterioration in precision at the fixed high-ability anchor. The standard error

SEt(θ
⋆) is roughly stable through 2013, worsens modestly in 2014–2017, and then rises sharply after 2018.

This pattern is the intensive-margin implication of the item-location drift: holding ability constant at a high

level relevant for selective screening at elite institutions, later-year item pools deliver less Fisher information,
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hence larger measurement error (Lord, 1980). The table also illustrates increasing concentration of informa-

tion in a small subset of items (Top-10 share), consistent with a smaller effective set of high-discrimination,

high-location items in later years. While this metric is influenced by pool size Nt, the magnitude of the

observed increase exceeds what variation in Nt alone would predict.

Table 2: Fixed-point measurement precision at a high-ability anchor (θ⋆ = θ20110.90 ).

Year N items θ⋆ E[It(θ⋆)] SEt(θ
⋆) ∆SE Median Ijt(θ

⋆) Top-10 share

2011 94 2.953 5.942 0.410 +0.000 0.023 0.519
2012 139 2.953 6.062 0.406 -0.004 0.027 0.459
2013 73 2.953 6.301 0.398 -0.012 0.027 0.599
2014 128 2.953 5.448 0.428 +0.018 0.026 0.485
2015 69 2.953 4.372 0.478 +0.068 0.023 0.736
2016 116 2.953 5.236 0.437 +0.027 0.024 0.481
2017 81 2.953 4.835 0.455 +0.045 0.034 0.574
2018 125 2.953 3.344 0.547 +0.137 0.007 0.698
2019 126 2.953 4.199 0.488 +0.078 0.012 0.570
2020 73 2.953 2.201 0.674 +0.264 0.006 0.751
2021 73 2.953 3.275 0.553 +0.142 0.002 0.857
2022 120 2.953 1.409 0.843 +0.432 0.004 0.694
2023 74 2.953 2.958 0.581 +0.171 0.005 0.812

Notes: θ⋆ is the 2011 90th-percentile ability on the latent scale. E[It(θ⋆)] denotes expected test information under stratified

uniform sampling without replacement from the year-t item pool, as defined in Section 3.4. SEt(θ⋆) = 1/
√

E[It(θ⋆)] (Lord,
1980). ∆SE is measured relative to 2011. “Top-10 share” is the share of E[It(θ⋆)] contributed by the ten most informative
items at θ⋆ in year t. This metric is mechanically influenced by pool size Nt: holding the item-information distribution fixed,
smaller pools yield higher Top-10 shares. However, years with similar Nt (e.g., 2013 with N = 73 vs. 2023 with N = 74) show
substantially different concentration levels, indicating that the pattern reflects substantive changes in item composition rather
than pool-size artifacts alone.

Two features of the item-level information distribution clarify the mechanism behind the rise in SEt(θ
⋆).

First, the median item information at θ⋆ falls markedly after 2018, indicating that the typical item contributes

little information at a high-ability benchmark, consistent with leftward drift in item locations and saturation

of correct-response probabilities at θ⋆. Second, information becomes increasingly concentrated: the ten most

informative items account for a larger share of total information in later years, implying that upper-tail

precision depends disproportionately on a thin subset of items. This concentration also implies sensitivity

to effective item-pool coverage. When high-information items are under-represented in the observed pool,

fixed-point precision can fall sharply even if mean item parameters change only modestly. I discuss this

further in Section 5.

4.4 Within-year upper-tail precision and stylized classification error

Table 3 evaluates precision at the 90th percentile of each year’s recovered cohort distribution, θt0.90, and

translates it into a conditional misclassification probability for examinees near the threshold under the sym-
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metric threshold rule described in Section 3. First, within-year upper-tail precision fluctuates substantially

over time. It is notably worse in 2020 and best in 2022 in these diagnostics. Second, these within-year

fluctuations do not contradict the fixed-anchor deterioration in Table 2: within-year SEt(θ
t
0.90) incorporates

both the measurement technology and the location of the cohort upper tail. The fixed-anchor results isolate

the measurement technology component by itself.

Table 3: Upper-tail standard errors at θt0.90 and stylized classification implications.

Year SEt(θ
t
0.90) False neg. False pos. Total error µ̂t σ̂t

2011 0.410 0.111 0.111 0.223 0.074 2.033
2012 0.407 0.110 0.110 0.219 0.063 2.097
2013 0.395 0.103 0.103 0.205 -0.010 2.148
2014 0.429 0.122 0.122 0.244 0.074 2.004
2015 0.497 0.157 0.157 0.315 0.014 2.178
2016 0.433 0.124 0.124 0.248 -0.042 2.258
2017 0.396 0.103 0.103 0.207 -0.736 2.217
2018 0.416 0.115 0.115 0.230 -1.616 2.425
2019 0.368 0.087 0.087 0.174 -1.611 2.740
2020 0.547 0.180 0.180 0.361 -2.097 3.032
2021 0.426 0.120 0.120 0.241 -2.129 3.094
2022 0.349 0.076 0.076 0.152 -2.613 2.590
2023 0.426 0.121 0.121 0.241 -2.663 3.273

Notes: SEt(θt0.90) is evaluated at the 90th percentile of the recovered cohort distribution in year t. “Total error” is the
conditional misclassification probability for examinees located at distance δ from the threshold, implied by the tolerance-band
rule in Section 3; this is a local precision diagnostic rather than a system-wide error rate. By symmetry, false-positive and
false-negative are identical. (µ̂t, σ̂t) are the cohort calibration parameters used to locate θt0.90 and to map item parameters to
published score moments. Early-year calibration estimates show minor sensitivity to the optimization window; robustness to
alternative weighting schemes is reported in Online Appendix D.

Institutional selectivity and academic match has meaningful consequences for educational attainment

and labor market outcomes (Dillon and Smith, 2020; Hoxby and Avery, 2013; Chetty et al., 2020). This

literature distinguishes between undermatch, wherein students attend less selective institutions than their

credentials would support and overmatch , wherein students attend more selective institutions than their

credentials would support (Hoxby and Avery, 2012; Dillon and Smith, 2017). Table 3 provides under a stylized

admissions rule that measurement errors in the screening instruments generate misclassification in both

directions. False negatives tantamount to undermatch, while false positives correspond to overmatch. This

diagnostic therefore is a measurement-based decomposition of match inefficiency distinct from behavioral

channels such as information barriers, application costs or preference heterogeneity.

4.5 Human validation

To test whether the AI-implied difficulty ordering generalizes to human examinees, 26 business college

freshmen from the University of Cincinnati each answered 48 SAT Math items (12 drawn from each of four
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Figure 3: Human validation results: mean accuracy by item year. Error bars represent 95% confidence
intervals. The upward trend in accuracy across item years shows the direction to be consistent with the AI-
implied difficulty ordering. The University of Cincinnati’s median SAT math score for admissions according
to the College Scorecard in 2024 was 580.

years: 2011, 2015, 2019, 2023, items were randomized to mask sequential items) within a 70-minute session.

Mean accuracy increases from 51.2% on 2011 items to 65.3% on 2023 items. The Jonckheere-Terpstra test

for ordered alternatives yields z = 4.16 (p < 0.0001), confirming that human accuracy is stochastically

increasing in item year (Jonckheere, 1954). The JT test is a nonparametric test that does not rely on

variance estimation under clustering. A supplementary linear probability model with student fixed effects

yields β̂2023 = 0.141 (SE = 0.035, p < 0.001), indicating students score 14.1 percentage points higher on

2023 items relative to 2011; full regression results appear in the Online Appendix G2. These results establish

that the difficulty ordering recovered from LLM responses aligns with human-experienced difficulty, given

the collected sample.

5 Discussion

5.1 Interpreting test-optional outcomes through a measurement lens

Recent research documents shifts in selective admissions during the expansion of test-optional and test-free

policies. Even in periods with a large pool of high-scoring applicants, elite institutions enrolled students

with stronger high school grades but weaker standardized test scores (Sacerdote et al., 2025). Other work

documents “compression at the top,” in which institutions placed less weight on SAT scores even among

2This study was exempted by the University of Cincinnati’s IRB in accordance with 45 CFR 46.104. The estimate β̂2023 is
from a linear probability model with student fixed effects and standard errors clustered at the student level.
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applicants who submitted them (Avery et al., 2025). These patterns are often interpreted as evidence of a

deliberate pivot toward holistic assessment, a reweighting toward noncognitive attributes, or responses to

equity objectives.

The analysis offers a complementary interpretation grounded in measurement. If the SAT’s informative-

ness changes over time, both in where it is most precise on the latent ability scale and in the magnitude of

measurement error at the upper tail, then a stable admissions rule that heavily weights test scores becomes

mechanically less defensible. Under this view, “compression at the top” is consistent with an admissions

office encountering a signal that is less discriminating in the region it cares about most. Importantly, this

framework does not presume that institutions observe the latent objects estimated here. Rather, it provides

a structured explanation for why de-emphasizing test scores can be a response to changes in the signal

environment, even absent a shift in institutional preferences over applicant attributes.

Item drift and where the SAT is informative. A central empirical finding is that LLM-implied

item difficulty declines over 2011–2023, while discrimination remains broadly stable. Under standard IRT

mechanics, this combination implies a leftward shift in where items deliver maximal information (Birnbaum,

1968; Lord, 1980). The SAT Math section continues to differentiate examinees locally, but it does so at lower

regions of the latent ability distribution.

This “where-information-lives” result is distinct from an average-score narrative. Public debates often

focus on whether mean SAT scores rise or fall. Selective admissions decisions are sensitive to local signal

precision near relevant cutoffs rather than to unconditional means. The measurement diagnostics therefore

emphasize reliability in rank-ordering applicants at the upper tail, the margin at which elite institutions

operate. The estimates therefore characterize the measurement properties of the observed in the item pools

rather than the full operational forms. However, the main patterns emphasize are diagnostic in nature: at

a fixed high-ability anchor at θ⋆ = θ20110.90 in Table 2, median item information falls and total information

becomes increasingly concentrated in a small subset of items. These features are difficult to reconcile with

purely random subsampling from a stable underlying pool and highlight that upper-tail precision is suscepti-

ble to the item set. Accordingly, the conclusions are evidence consistent with drift under the minimal public

availability of the true item-pool and concentration diagnostics quantify this sensitivity. Under these con-

straints, using LLMs as benchmarking tools, the study provides a falsifiable diagnostics about measurement

drift and signal informativeness.

Upper-tail precision and misclassification interpretation. To make the precision results inter-

pretable in admissions language, I evaluate measurement error at two reference points: the upper tail of

each year’s recovered cohort distribution (θt0.90) and a fixed high-ability anchor (θ⋆ = θ20110.90 ). Within-year

upper-tail precision fluctuates substantially and exhibits a deterioration in 2020. At the fixed anchor, preci-
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sion deteriorates after 2018, reflecting an intensive-margin change driven by item-location drift rather than

cohort composition.

Mapping these standard errors into a stylized threshold setting yields implied misclassification probabili-

ties that vary widely across years. These calculations are not estimates of realized admissions mismatch, nor

do they assume a single cutoff rule. Instead, they provide an intuitive mapping from measurement precision

to classification reliability. The point is that modest changes in standard error near admissions-relevant

regions can generate large changes in implied error rates, precisely the environment in which an admissions

office might reduce reliance on test scores.

The diagnostics in Table 3 also decompose stylized misclassification into false positives and false nega-

tives. Hoxby and Avery (2013) document high-achieving, low-income students are often undermatched at

higher rates than affluent peers, due to information barriers. These students rely disproportionately on stan-

dardized tests to signal their ability. Dillon and Smith (2020) show that mismatch in either direction reduces

graduation rates and earnings, while moderate mismatch has ambiguous effects. Further, Arcidiacono and

Lovenheim (2016) review evidence that overmatch may harm students through grade penalties and STEM

attrition. Bleemer (2022) however finds the California Prop 209’s reduction in overmatch worsened outcomes

for affected students, suggesting institutional quality and support systems can dominate match effects.

The measurement driven diagnostics provided in this paper offer a supply-side complement to the demand-

side literature on mismatching. When upper tail precision declines, the threshold-based screening generated

mismatch in both directions. The welfare consequences of these are asymmetric. If institutions respond

to lower precision by downweighting test scores, the alternative signals are more resource-sensitive and

AI can game them more easily (Sacerdote et al., 2025; Friedman et al., 2025; Cui et al., 2025; Frankel

and Kartik, 2019). This can exacerbate information barriers identified by Hoxby and Avery (2012, 2013),

disproportionately harming disadvantaged, high-ability students.

2020 as a measurement stress test. The decline in upper-tail precision in 2020 coincides with docu-

mented disruptions in test administration and participation. It is therefore plausible that 2020 represented

a year in which SAT Math scores became less reliable as screening inputs, even holding test design fixed.

This paper does not claim that test-optional adoption was caused by the measurement deterioration

documented here. Institutions faced a bundle of simultaneous constraints in 2020–2021, including test-

center closures, unequal access to testing dates, applicant stress, and equity concerns. Any of these could

independently justify policy changes. If institutions perceived the score as less reliable or less comparably

available across applicants, then de-emphasizing the SAT is a mechanically consistent response to a noisier

signal.

The more interesting policy question concerns persistence: many test-optional policies remained in place
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after 2020. A measurement perspective suggests that persistence need not reflect continued decline in

precision. It may instead reflect institutional inertia, uncertainty about whether the 2020 disruption was

temporary, selection into score submission, and reputational or political costs of reversing course.

Distributional implications and equity tradeoffs. A central concern raised in the test-optional

literature is that de-emphasizing standardized scores may reduce enrollment of low-income, high-ability

applicants, the group for whom a comparable metric can provide the strongest counterweight to weaker

school resources or less polished holistic credentials (Sacerdote et al., 2025; Chetty et al., 2023; Friedman

et al., 2025). If the SAT becomes less informative at the upper tail, reliance on the score may weaken

mechanically. But if alternative signals are even more resource-sensitive, abandoning the standardized signal

can still worsen equity outcomes.

When test scores are down weighted, admissions processes implicitly reallocate weight toward grades,

course-taking, recommendations, essays, and extracurricular portfolios. These signals known to vary sys-

tematically across schools and socioeconomic contexts (Chetty et al., 2023; Frankel and Kartik, 2019). The

measurement perspective reframes equity debates as questions about the relative precision and bias of the

full signal portfolio used in admissions decisions.

5.2 Limitations and interpretation

Several limitations must be acknowledged. First, SAT item contents are proprietary, and the publicly

available set through the internet archives is not guaranteed to be a random draw from the operational pool.

The low fixed-anchor information in 2022 illustrates why coverage matters for high-ability precision. This

pattern is mechanically consistent with the estimated leftward shift in item difficulty but may also reflect

non-representative item availability. To guard against over-interpreting any single year, emphasis is placed

on trends that are stable across adjacent years and across alternative benchmarking subset of models.

Second, item parameters are estimated from LLM response patterns rather than human microdata.

They should be interpreted as benchmark-implied diagnostics under a maintained stability assumption, not

as definitive psychometric estimates. While partial training-data exposure cannot be ruled out entirely, the

consistency of trends across a heterogeneous set of open-source models mitigates concerns that results are

driven by a single model or vendor (see Online Appendix A for LLM details). The training contamination

robustness check by paraphrasing items also supports the suggestion that data leakage is not significantly

present (see Online Appendix G for contamination check details).

Third, the recovered cohort parameters (µ̂t, σ̂t) are model-consistent constructions on a latent scale.

They reconcile easier item locations with observed score moments but do not separately identify preparation
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changes and compositional shifts in the test-taking population. These implied metrics are not to be considered

as true estimates of ability changes in student cohorts. Finally, the standard error and misclassification

calculations are mechanical implications of the estimated measurement technology. They do not incorporate

the full admissions process, in which institutions combine multiple signals and use scores in non-threshold

ways.

5.3 Implications and conclusion

Taken together, the results suggest that the test-optional policies can be understood partly as a response

to changes in the signal environment. Where the SAT is most informative, and how reliable it is at the

upper tail, varies over time and exhibits a disruption in 2020. While this paper does not identify a causal

link from measurement precision to admissions policy, the measurement perspective reconciles post-2020

admissions patterns: institutions adjust the weight placed on signals when the marginal information content

of those signals changes. As universities begin to reconsider the SAT’s role in admissions, with GenAI

polishing essays and recommendations, understanding the measurement properties of standardized tests

remains crucial because they are the few signals free from gaming and resource biases.

One plausible mechanism for the observed item-location drift is endogenous adaptation by test designers.

The College Board pretests items on sample cohorts and may adjust item pool to maintain target score

distributions. If underlying math proficiency declines consistent with the NAEP and PISA trends, item

pools would shift towards easier items to maintain score stability. The mapping from ability to scores adapts

to the population, creating a Lucas critique analog in the measurement environment.

From an economic standpoint, upper tail precision is critical for students from disadvantaged back-

grounds who rely on standardized tests to credibly signal high ability. This raises policy questions about

the test-optional equilibria, human-capital investment incentives, and access to opportunity. The AI-audit

approach illustrates how large language models can generate novel measurement diagnostics in data-scarce

environments, informing future work on admissions and education policy.

The policy implication is not that standardized testing should be uncritically retained or discarded,

but evaluated based on the quality of the signal it is able to transmit. Admissions should be evaluated

as portfolios of signals, with attention to precision, comparability, and distributional consequences for the

applicants most reliant on standardized measures.
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Online Appendix

A Benchmark IRT specification and identification details

This appendix records the pooled Bayesian IRT model used to estimate item parameters from LLM response

patterns. The core model is a 3PL for multiple-choice items and a 2PL restriction for numeric-response

items, consistent with standard psychometric practice (Birnbaum, 1968; Lord, 1980; Kolen and Brennan,

2014).

Likelihood. Let ymjtr ∈ {0, 1} denote whether benchmark model m answers item j from year t correctly

on attempt r. Attempt-specific effective ability is

αmr = αm + σrepεmr, εmr ∼ N (0, 1). (17)

For multiple-choice items, the correctness probability is

Pjt(α) = cjt + (1− cjt)Λ(ajt(α− bjt)) , Λ(x) =
1

1 + e−x
. (18)

For numeric-response items, I impose cjt ≡ 0 (2PL). The pooled likelihood over all responses is

L(Θ | Y) =
∏
m

∏
j,t

∏
r

Pjt(αmr)
ymjtr [1− Pjt(αmr)]

1−ymjtr . (19)

Pooling all items across years in a single likelihood places (ajt, bjt, cjt) on a common latent scale without

cross-year linking, justified by a stable benchmark evaluated under fixed prompting (Kolen and Brennan,

2014).

Parameter Prior / distribution Notes / hyperparameters

Model ability (subset) θm θm ∼ N (0, 22) m = 1, . . . ,Msub (subset-only)
Reprompt SD σrep σrep ∼ HalfNormal(0, 0.5) Common reprompt noise across models
Item discrimination (log) log ak log ak ∼ N (0, 12) k = 1, . . . ,Ksub; implies ak = exp(log ak)
Item discrimination (level) ak ak = exp(log ak) Log-normal implied prior; median = 1
Item difficulty bk bk ∼ N (0, 22) Wide prior spanning broad difficulty range
Pseudo-guessing (MCQ) ck ck ∼ Beta(αk, βk) For non-numeric items only;

centered above random baseline
Pseudo-guessing (numeric) ck ck ≡ 0 Numerical response items fixed at zero

Table 4: Priors used in the pooled Bayesian IRT model (subset specification) are weakly informative.

We center pseudo-guessing priors above the mechanical random-guess baseline (e.g., 1/5 pre-2016; 1/4

post-2016) to reflect that the benchmark population (LLMs) can occasionally eliminate options but still
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guess, while preserving support on (0, 1) (Gelman et al., 2013, 2008).

Item type Guessing prior Mean Notes

MCQ (5-option era) ck ∼ Beta(α, β) ≈ 0.21 Slightly above 0.20 random baseline
MCQ (4-option era) ck ∼ Beta(α, β) ≈ 0.26 Slightly above 0.25 random baseline
Numeric response ck ≡ 0 — Fixed at zero (2PL)

Table 5: Pseudo-guessing parameter priors by item format.

Item types and guessing. The pseudo-guessing parameter is estimated for MCQ items and fixed to

zero for numeric-response items. The estimated cjt series shifts upward mechanically after the 2016 redesign

(five-option to four-option MCQ), consistent with random-guess baselines (Lord, 1980).

Item characteristic curve validation. To assess whether LLM response patterns conform to the

3PL specification, I compare empirical item response functions to theoretical ICCs for items spanning the

difficulty range. Figure 4 displays representative items that show variation in response patterns. Across

these 1,236 items, the median correlation between observed and predicted response probabilities is 0.45. The

monotonic relationship between model ability and accuracy generally holds, supporting the use of IRT as a

measurement framework for directional assessment of item properties. Individual item fits show expected

noise given the limited benchmark sample of 20 models.

Figure 4: Empirical versus theoretical 3PL item characteristic curves for representative items at different
difficulty levels. Points represent observed accuracy rates for each of 20 benchmark LLMs; curves show fitted
3PL predictions. Dashed horizontal lines indicate the guessing parameter.

B Benchmark model ability summaries and MCMC convergence

B.1 Benchmark model abilities

Table 6 reports posterior summaries for benchmark model abilities. Cross-model heterogeneity provides

identification leverage for item parameters.
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Model ID Theta Mean Theta Median Theta SD Theta Q025 Theta Q975 Theta ESS Theta R̂ Model Name

20 4.377 4.378 0.091 4.201 4.557 350.609 1.008 openai/gpt-oss-20b

7 2.266 2.264 0.067 2.139 2.399 159.086 1.016 deepcogito/cogito-v2-preview-deepseek-671b

4 2.023 2.021 0.065 1.897 2.148 152.033 1.012 Qwen/Qwen3-Coder-480B-A35B-Instruct-FP8

17 1.659 1.658 0.065 1.536 1.787 158.108 1.013 moonshotai/Kimi-K2-Instruct

18 1.474 1.474 0.063 1.355 1.596 139.516 1.013 moonshotai/Kimi-K2-Instruct-0905

3 1.428 1.427 0.064 1.310 1.562 137.437 1.011 Qwen/Qwen3-235B-A22B-Instruct-2507-tput

5 1.198 1.198 0.061 1.084 1.314 138.573 1.008 Qwen/Qwen3-Next-80B-A3B-Instruct

15 1.063 1.062 0.061 0.949 1.183 126.661 1.012 meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo

9 0.524 0.524 0.059 0.414 0.641 122.146 1.013 deepcogito/cogito-v2-preview-llama-405B

2 0.396 0.397 0.061 0.278 0.515 129.601 1.010 Qwen/Qwen2.5-VL-72B-Instruct

14 -0.062 -0.061 0.062 -0.185 0.057 134.786 1.011 meta-llama/Llama-3.3-70B-Instruct-Turbo

6 -0.167 -0.167 0.060 -0.281 -0.052 118.812 1.012 arcee-ai/coder-large

1 -0.185 -0.186 0.059 -0.293 -0.065 121.065 1.011 Qwen/Qwen2.5-Coder-32B-Instruct

8 -0.202 -0.199 0.062 -0.322 -0.080 131.924 1.010 deepcogito/cogito-v2-preview-llama-109B-MoE

10 -0.586 -0.585 0.063 -0.710 -0.465 146.571 1.008 deepcogito/cogito-v2-preview-llama-70B

19 -0.805 -0.803 0.066 -0.933 -0.679 151.615 1.008 nvidia/NVIDIA-Nemotron-Nano-9B-v2

12 -1.538 -1.539 0.065 -1.665 -1.409 161.598 1.011 lgai/exaone-3-5-32b-instruct

13 -1.987 -1.988 0.069 -2.124 -1.850 194.245 1.007 lgai/exaone-deep-32b

11 -2.439 -2.440 0.074 -2.582 -2.296 216.296 1.006 google/gemma-3n-E4B-it

16 -3.660 -3.657 0.087 -3.833 -3.491 318.398 1.004 mistralai/Mistral-7B-Instruct-v0.3

Table 6: Posterior summaries of benchmark model ability parameters (αm) with MCMC diagnostics.

B.2 Convergence diagnostics: R̂ and ESS

Across 2011–2023 SAT Math items, HMC diagnostics indicate stable posterior recovery. The potential scale

reduction statistic R̂ compares within-chain and between-chain variation; values near one indicate chains

are sampling from the same stationary distribution (Gelman and Rubin, 1992). Effective sample size (ESS)

summarizes the Monte Carlo precision of correlated draws, capturing how many independent samples would

deliver comparable accuracy (Gelman and Rubin, 1992).

For completeness, for a scalar parameter δ with m chains of length n post-warmup, define the between-

chain variance

B =
n

m− 1

m∑
j=1

(
δ̄j − δ̄

)2
, (20)

and the average within-chain variance

W =
1

m

m∑
j=1

s2j , s2j =
1

n− 1

n∑
i=1

(
δij − δ̄j

)2
. (21)

The marginal posterior variance estimator is

V̂ar(δ) =

(
1− 1

n

)
W +

1

n
B, (22)

and

R̂ =

√
V̂ar(δ)/W. (23)

For ESS, let N be the total post-warmup draws aggregated across chains and ρt the lag-t autocorrelation.
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Then

Neff ≈ N

1 + 2
∑∞

t=1 ρt
. (24)

Table 7: MCMC convergence diagnostics for item parameters (2011–2023 items).

Parameter R̂ (median) R̂ (p95) R̂ (max) ESS (min) ESS (p05) ESS (median) ESS (max)

Discrimination a 1.001 1.004 1.012 802 2268 3095 5484
Difficulty b 1.001 1.004 1.014 526 1099 2298 3842
Guessing c 1.001 1.005 1.011 855 2768 3955 6593

Table 8: Convergence diagnostics by question type (2011–2023 items).

Question type Parameter R̂ (median) R̂ (p95) R̂ (max) ESS (min) ESS (p05) ESS (median) N items

MCQ Discrimination a 1.001 1.004 1.012 802 2255 3109 1018
MCQ Difficulty b 1.001 1.004 1.014 558 1095 2307 1018
MCQ Guessing c 1.001 1.005 1.011 855 2768 3955 1018
Numeric Discrimination a 1.001 1.004 1.007 1072 2294 3065 273
Numeric Difficulty b 1.001 1.003 1.006 526 1125 2262 273

C Item parameter summaries by question type

Table 9 reports posterior summaries of item parameters separately for MCQ and numeric-response items.

Discrimination is similar across types, while numeric-response items are modestly easier on average (more

negative b). Guessing behaves as expected: present for MCQs and fixed at zero for numeric-response items

(Lord, 1980).

Table 9: Posterior summaries of item parameters by question type (2011–2023 items).

Discrimination a Difficulty b Guessing c

Question type N Mean SD Q25 Q75 Mean SD Q25 Q75 Mean SD Q25 Q75

MCQ 1018 1.529 0.718 1.005 1.936 −0.285 2.431 −2.053 1.312 0.242 0.042 0.217 0.274
Numeric 273 1.544 0.701 1.074 1.864 −0.455 2.405 −2.176 1.118 0.000 0.000 0.000 0.000

D Score construction: raw scoring, concordance, and simulated

moment matching

To compare scaled scores before and after the 2016 redesign, I replicate period-specific scoring rules and map

simulated raw scores to official SAT Math scaled scores using published raw-to-scale conversion tables. Con-
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cordance mapping is applied for pre-2016 scaled scores to express all outcomes on the post-2016 concordance

scale (Kolen and Brennan, 2014).

Raw scoring. Let Kt denote the number of items in year t. For a simulated examinee i, let Cit, Wit, and

Oit denote correct, wrong, and omitted counts with Kt = Cit +Wit + Oit. Before 2016, the wrong-answer

penalty implies

Rit = Cit − 0.25Wit, (25)

and Rit is rounded to the nearest integer before applying the published integer-to-scale table. Since 2016,

the raw score is Rit = Cit.

Concordance. For pre-2016 administrations, scaled scores are transformed using official concordance

maps to the post-2016 concordance scale (Kolen and Brennan, 2014). Post-2016 scores are already on the

concordance scale.

Simulated moment matching. For each year t, define observed concorded score moments

Mobs
t =

(
s̄t, sd(st), Q0.25(st), Q0.50(st), Q0.75(st)

)
, (26)

where st denotes the cross-sectional distribution of concorded SAT Math scores and Qp(·) denotes the

pth quantile. Given the year-t item set Jt and estimated parameters ϕ̂jt = (âjt, b̂jt, ĉjt), and given scor-

ing/concordance rules, for a candidate cohort distribution θ ∼ N (µ, σ2) I simulate a synthetic cohort {θi}Ni=1

(with N ≈ 105) and draw item responses

Yijt ∼ Bernoulli
(
ĉjt + (1− ĉjt)Λ(âjt(θi − b̂jt))

)
. (27)

For pre-2016 years, the simulation incorporates a probabilistic omission rule: simulated examinees omit

items where their perceived probability of correctness falls below 0.20, the breakeven threshold for five-

option MCQs under the wrong-answer penalty. Attempted items with Yijt = 0 count as wrong (Wit);

omitted items contribute zero to the raw score. For post-2016 years, all items are attempted and no penalty

applies.

I then compute the simulated concorded score moments M sim
t (µ, σ).

The objective uses squared relative errors for scale comparability across moments:

err(m) =

(
msim −mobs

mobs

)2

, (28)
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and minimizes

(µ̂t, σ̂t) = arg min
µ,σ>0

Lt(µ, σ), (29)

with

Lt(µ, σ) = wmean

(
err(s̄) + err(Q0.50)

)
+ wothers

(
err(sd) + err(Q0.25) + err(Q0.75)

)
. (30)

The baseline specification sets wmean = 4 and wothers = 1. Because the raw-to-scale mapping is discrete with

redesign-era discontinuities, the objective is non-smooth; optimization therefore uses Nelder–Mead (Nelder

and Mead, 1965). For reproducibility, simulations are seeded deterministically by year.

Calibration: 2× weight on mean Calibration: 4× weight on mean

Year µ̂t σ̂t Loss µ̂t σ̂t Loss

2011 0.312 2.016 1.01e-06 0.074 2.033 0.00833
2012 0.094 2.138 0.00181 0.063 2.097 0.00306
2013 -0.019 2.147 0.00180 -0.010 2.148 0.00259
2014 0.078 1.992 0.000541 0.074 2.004 0.000541
2015 -0.039 2.232 0.000988 0.014 2.178 0.000893
2016 -0.051 2.259 2.16e-06 -0.042 2.258 2.97e-07
2017 -0.739 2.213 1.38e-05 -0.736 2.217 2.53e-05
2018 -1.616 2.425 1.41e-09 -1.616 2.425 7.26e-10
2019 -1.611 2.740 7.82e-09 -1.611 2.740 1.78e-09
2020 -2.194 3.068 0.000521 -2.097 3.032 0.000435
2021 -2.129 3.094 2.59e-10 -2.129 3.094 1.60e-09
2022 -2.612 2.590 1.02e-08 -2.613 2.590 3.01e-09
2023 -2.663 3.273 0.000288 -2.663 3.273 0.000288

Table 10: Robustness of cohort calibration to loss-function weighting.

Notes: The two calibration runs use different optimization windows: the 4× specification optimizes from 2011 onward
(matching the main analysis), while the 2× specification optimizes from 2008 onward with only 2011+ years reported. Loss
values are therefore not directly comparable across columns, as they reflect different underlying objective functions.
Parameters that appear identical are subject to rounding; full-precision estimates differ slightly.

E Test information and fixed-anchor precision diagnostics

Test information and standard error follow standard IRT definitions (Lord, 1980). Let ϕjt = (ajt, bjt, cjt).

For a given year-t item pool Jt, item information at ability θ is

Ijt(θ | ϕjt) =

(
P ′
jt(θ)

)2
Pjt(θ) (1− Pjt(θ))

, Pjt(θ) = cjt + (1− cjt)Λ(ajt(θ − bjt)). (31)

To reflect uncertainty over the realized test form drawn from the year-t pool, expected test information
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Figure 5: This figure shows two trends overlaid for comparison: (1) the estimated cohort mean ability
changes relative to baseline year 2011, ∆µt (blue line, left axis) and (2) the average SAT Math score changes
relative to 2011 (red dashed line, right axis). Both series exhibit similar downward trends over 2011–2023.
Using the IRT parameters recovered from LLM responses, the estimated cohort mean ability µ̂t captures
shifts in the underlying ability distribution needed to reproduce observed score population trends. µ̂t are not
estimates of human test-taker ability per se, but reconcile observed score trends with stable item parameters
under the IRT model.
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is computed under stratified uniform sampling without replacement:

E[It(θ)] =
nmcq,t

Nmcq,t

∑
j∈Jmcq

t

Ijt(θ) +
nans,t

Nans,t

∑
j∈Jans

t

Ijt(θ), (32)

with implied standard error

SEt(θ) =
1√

E[It(θ)]
. (33)

Table 11 reports fixed-point precision at the high-ability anchor θ⋆ = θ20110.90 and documents concentration

in item-level information at that anchor.

Table 11: Fixed-point measurement precision and item-level information diagnostics at a high-ability anchor.

Year N items θ⋆ E[It(θ⋆)] SEt(θ
⋆) ∆SE Median Ijt(θ

⋆) Top-10 share

2011 94 2.953 5.942 0.410 +0.000 0.023 0.519
2012 139 2.953 6.062 0.406 -0.004 0.027 0.459
2013 73 2.953 6.301 0.398 -0.012 0.027 0.599
2014 128 2.953 5.448 0.428 +0.018 0.026 0.485
2015 69 2.953 4.372 0.478 +0.068 0.023 0.736
2016 116 2.953 5.236 0.437 +0.027 0.024 0.481
2017 81 2.953 4.835 0.455 +0.045 0.034 0.574
2018 125 2.953 3.344 0.547 +0.137 0.007 0.698
2019 126 2.953 4.199 0.488 +0.078 0.012 0.570
2020 73 2.953 2.201 0.674 +0.264 0.006 0.751
2021 73 2.953 3.275 0.553 +0.142 0.002 0.857
2022 120 2.953 1.409 0.843 +0.432 0.004 0.694
2023 74 2.953 2.958 0.581 +0.171 0.005 0.812

Notes: θ⋆ is fixed at the 2011 90th-percentile ability, θ⋆ = θ20110.90 . E[It(θ⋆)] is expected test information computed from the
year-t item pool using stratified sampling weights (MCQ vs. numeric) implied by SAT section composition;

SEt(θ⋆) = 1/
√

E[It(θ⋆)] (Lord, 1980). ∆SE is relative to 2011. Median Ijt(θ
⋆) is the median item information at θ⋆ across

items in year t. Top-10 share is the fraction of
∑

j Ijt(θ
⋆) contributed by the 10 highest-information items in that year.

F Robustness: eight-model replication subset

As a robustness check, year-level item-parameter summaries are recomputed using an eight-model subset

selected from the middle of the benchmark ability distribution shown in Table 6. The difficulty series closely

reproduces the full-benchmark pattern, indicating that downward drift in b̄t is not driven by a small number

of extreme models. Discrimination comparisons are mechanically attenuated under the narrower ability

range used for the subset, consistent with the identification of slope parameters in IRT (Lord, 1980).
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Figure 6: Expected test information curves for select years. Test information is computed under stratified
uniform sampling without replacement from the year-t item pool, reflecting the actual SAT Math section
composition. Over time, the peak of test information moves leftward, consistent with downward drift in item
difficulty.

Table 12: Item-parameter trends: full 20-model benchmark versus 8-model replication subset (2011–2023).

Year ā (Full) ā (8-model) b̄ (Full) b̄ (8-model)

2011 1.511 1.135 0.191 0.498
2012 1.489 1.258 0.149 0.698
2013 1.436 1.310 0.013 0.261
2014 1.398 1.261 -0.061 0.234
2015 1.353 1.225 0.134 0.244
2016 1.533 1.313 0.228 0.324
2017 1.530 1.375 0.254 0.248
2018 1.661 1.463 -0.737 -0.576
2019 1.578 1.405 -0.567 -0.202
2020 1.531 1.507 -0.838 -0.628
2021 1.764 1.575 -0.793 -0.583
2022 1.564 1.379 -1.373 -1.210
2023 1.562 1.380 -0.738 -0.606

Table 13: Agreement between full 20-model benchmark and 8-model replication (year-level means, 2011–
2023).

Parameter Pearson r Spearman ρ Slope (Rep on Full) Intercept R2 N (years)

Discrimination (a) 0.763 0.830 0.863 0.031 0.582 13
Difficulty (b) 0.969 0.907 1.022 0.225 0.940 13
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Figure 7: Item-parameter trends for the eight-model replication subset (2011–2023). The left panel shows
average discrimination āt by year; the right panel shows average difficulty b̄t by year. The difficulty trend
closely matches that of the full 20-model benchmark, indicating that downward drift in b̄t is not driven by
a small number of extreme models. Discrimination comparisons are attenuated under the narrower ability
range used for the subset, consistent with IRT identification of slope parameters.

G Robustness: contamination check

To assess whether LLM responses reflect memorization of training data rather than genuine problem-solving,

I conduct a contamination robustness check using paraphrased items. A stratified subsample of 224 items

(54 items for years 2011, 2015 and 58 items for years 2019, 2023 to match one test form) is paraphrased

using GPT-4o-mini to preserve mathematical content while altering surface-level wording. Six mid-ability

models (the same models from the 8 model robustness check in Appendix F excluding 2 deprecated models,

the Arcee Coder Large and Qwen2.5 72B Instruct, at the time of running this contamination robustness

in late January 2026) from the benchmark are then evaluated on both original and paraphrased versions.

Figure 8 shows that accuracy on original items (54.3%) and paraphrased items (54.0%) is nearly identical,

with year-level differences ranging from −1.8 to +1.9 percentage points. This pattern is inconsistent with

memorization, which would predict systematically higher accuracy on original items.

Secondly, common crawl data used for LLM training is filtered, homogenized and run through several

quality filters. The item set used in this study were transcribed manually from very low quality scanned

PDFs of official test booklets, making it unlikely that exact copies exist in training data. The paraphrasing

process and robustness results further mitigate concerns about contamination.

Paraphrasing prompt. Items were paraphrased using GPT-4o-mini and Moonshot’s Kimi K2 Instruct

0905 with the following system prompt:

You rewrite SAT math questions to test memorization vs understanding.

Rules:

1. Keep the EXACT same mathematical problem—same numbers, same relationships, same answer
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Figure 8: Contamination robustness check: accuracy on original versus paraphrased items. Six mid-ability
models from Table 6 were evaluated on 224 items (54 items before 2016 and 58 items for years after 2016,
representing one full test form appropriate to the year) in both original and paraphrased form. The near-
identical accuracy rates suggest LLM responses reflect problem-solving rather than memorization. The items
were sampled stratified by question type (multiple-choice versus numeric response) and year using a fixed
seed 42 for reproducibility.
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Figure 9: This contamination check uses paraphrased items from Moonshot AI’s Kimi K2 Instruct 0905
model. The results are identical to the GPT-4o-mini paraphrased items. While a few items were excluded
due to parsing errors resulting in 203 items being tested over 4 years compared to the 224 items in the
GPT-4o-mini check in Figure 8. The items were sampled stratified by question type (multiple-choice versus
numeric response) and year using a fixed seed 42 for reproducibility.
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2. Significantly rephrase the wording—use different sentence structures, synonyms

3. Keep it concise—don’t make it longer than the original

4. Preserve all mathematical notation, equations, and numerical values exactly

5. If there’s a word problem context (e.g., “John has 5 apples”), you may change names/objects but

keep quantities

The user prompt appended each original question with the instruction: “Paraphrase this SAT math ques-

tion.” Generation used temperature 0.7 to encourage lexical diversity while preserving mathematical coher-

ence. Structured outputs using JSON mode ensured consistent formatting across all 224 items.

H Human Validation

H.1 Sample and Administration

The validation sample consists of 26 freshmen students admitted in 2025 from the University of Cincinnati,

Lindner College of Business. Each student answered 48 SAT Math items in a single 70-minute session,

approximating the time constraints of the actual SAT Math section. Items were drawn using a fixed seed:

12 items from each of four years (2011, 2015, 2019, 2023), stratified by question type (10 multiple-choice and

2 numeric response). All students received items in the same fixed order, which was randomized across item

years so that year-blocks were interleaved rather than sequential, mitigating systematic fatigue or learning

effects correlated with item year. Participants were not informed of item year or the purpose of the exercise.

Students received course credit for participation and no identifying information was collected.

H.2 Primary Analysis: Jonckheere-Terpstra Test

The hypothesis is that human accuracy is stochastically increasing in item year, consistent with the LLM-

implied difficulty decline documented in Table 1. I test this using the Jonckheere-Terpstra (JT) test for

ordered alternatives, a nonparametric procedure that evaluates whether k groups are stochastically ordered

under the alternative hypothesis.

Let Yit denote the accuracy of student i on items from year t. The JT test statistic is

J =
∑
t<t′

Utt′ , (34)

where Utt′ is the Mann-Whitney U statistic comparing groups t and t′. Under the null hypothesis that
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accuracy distributions are identical across years, J is approximately normal with

E[J ] =
N2 −

∑
t n

2
t

4
, Var(J) =

N2(2N + 3)−
∑

t n
2
t (2nt + 3)

72
, (35)

where N is the total number of observations and nt is the sample size for year t. Here, each student

contributes one accuracy observation per year, so N = 26× 4 = 104 student-year observations with nt = 26

for each year. The standardized test statistic z = (J − E[J ])/
√

Var(J) is referred to the standard normal

distribution.

Table 14 reports mean accuracy by year. Accuracy increases from 51.2% (2011) to 65.3% (2023), with a

modest dip in 2015 (46.1%) that is not statistically distinguishable from 2011. The JT test yields J = 2744.5,

E[J ] = 2028.00, z = 4.16, p < 0.0001 (one-sided), rejecting the null in favor of the ordered alternative.

Table 14: Human Accuracy by Item Year

Year N responses Mean accuracy SE 95% CI

2011 312 0.512 0.031 [0.452, 0.574]
2015 312 0.461 0.025 [0.412, 0.511]
2019 312 0.615 0.024 [0.569, 0.661]
2023 312 0.653 0.026 [0.602, 0.705]

Notes: Each cell represents 26 students × 12 items = 312 item-responses. Standard errors are clustered at the student level.
The 95% confidence intervals are computed as ȳ ± 1.96× SE. The JT test uses student-level accuracy (one observation per
student-year, N = 104), not the item-level response counts shown here.

H.3 Supplementary Analysis: Linear Probability Model

To provide interpretable effect sizes, I estimate a linear probability model with student fixed effects:

yij = αi + β2015 · 1[tj = 2015] + β2019 · 1[tj = 2019] + β2023 · 1[tj = 2023] + εij , (36)

where yij ∈ {0, 1} indicates whether student i answered item j correctly, αi is a student fixed effect, and

tj ∈ {2011, 2015, 2019, 2023} denotes item year with 2011 as the reference category.

Table 15 reports the results. Students score 14.1 percentage points higher on 2023 items relative to

2011 items (p < 0.001). The 2015 coefficient is negative but not statistically significant, consistent with the

descriptive pattern in Table 14.
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Table 15: Linear Probability Model: Correctness on Item Year

Coefficient SE (clustered) t p-value

Year = 2015 −0.051 0.034 −1.33 0.145
Year = 2019 0.103 0.035 3.08 0.007
Year = 2023 0.141 0.035 3.99 < 0.001

Student FE Yes
Observations 1,248
Students 26
Items 48

Notes: Reference category is 2011. Standard errors are clustered at the student level. Each student answered 48 items (12 per
year).

H.4 Inference Considerations

Standard errors in Table 15 are clustered at the student level to account for within-student correlation across

items. Because all students received items in a common fixed order, within-item correlation across students

is also plausible. Two-way clustering following Cameron et al. (2011) yields substantially larger standard

errors and renders the year coefficients statistically insignificant, reflecting the limited number of clusters in

both dimensions (25 students, 48 items). This however may be overly conservative, and not an object of

primary interest, since the goal is to validate the directional ordering of item difficulty rather than precise

effect-size estimation.

The Jonckheere-Terpstra test, which is nonparametric and does not rely on variance estimation under

clustering, provides the primary evidence for directional concordance. The linear probability model comple-

ments this by quantifying the magnitude of the accuracy difference, while precise inference is limited by the

sample size.

H.5 Interpretation

The validation establishes that the overall easing trend recovered from LLM responses—with early-year items

harder and 2023 items clearly easiest—aligns with human-experienced difficulty in the sample collected. In

the human data, 2011 and 2015 are statistically similar in difficulty (both harder than later years), while

2019 and 2023 show markedly higher accuracy. The 14 percentage point accuracy gap between 2011 and

2023 items, combined with the significant JT test for ordered alternatives, indicates that the AI benchmark

recovers the directional pattern of difficulty change relevant to human examinees, even if the precise year-

to-year ordering differs slightly.
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I Prompting protocol and templates

All items are evaluated under a fixed prompting protocol with deterministic decoding. For MCQs, option

order is randomized as a robustness check to option-position effects; metadata records the shuffle mapping.

I.1 Multiple-choice prompt template

System / instruction header: You are solving an SAT math multiple-choice question.

Question:

{QUESTION TEXT}

Options:

a) {OPTION A}

b) {OPTION B}

c) {OPTION C}

d) {OPTION D}

{e) {OPTION E} (pre-2016 only)}

Task: Select the correct answer.

I.2 Numeric-response prompt template

System / instruction header: You are solving an SAT math question that requires a numerical

answer.

Question:

{QUESTION TEXT}

Task: Give the numerical answer. For ranges, use standard mathematical notation like “1<x<3” or

“x≥5”. For single numbers, provide the exact value.

I.3 Prompt-generation code (for reproducibility)

Code used to assemble prompts and metadata:

def generate_multiple_choice_prompt(row, shuffle=False):

"""Generate prompt for multiple choice SAT questions"""

question = row[’question’]

year = row[’year’]

original_answer = row[’answer’]
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# Determine number of options based on year

if year < 2016:

options = [(’a’, row[’option_a’]),

(’b’, row[’option_b’]),

(’c’, row[’option_c’]),

(’d’, row[’option_d’]),

(’e’, row[’option_e’])]

option_labels = [’a’, ’b’, ’c’, ’d’, ’e’]

else:

options = [(’a’, row[’option_a’]),

(’b’, row[’option_b’]),

(’c’, row[’option_c’]),

(’d’, row[’option_d’])]

option_labels = [’a’, ’b’, ’c’, ’d’]

original_answer_lower = original_answer.lower()

correct_answer_after_shuffle = original_answer_lower

if shuffle:

# Find correct option content

correct_option_content = None

for label, content in options:

if label == original_answer_lower:

correct_option_content = content

break

# Shuffle option contents only (labels fixed)

option_contents = [content for _, content in options]

random.shuffle(option_contents)

options = [(label, content)

for label, content in zip(option_labels, option_contents)]

# Find new label for correct content

for new_label, content in options:

if content == correct_option_content:
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correct_answer_after_shuffle = new_label

break

prompt = f"""You are solving an SAT math multiple-choice question.

Question:

{question}

Options:

"""

for label, content in options:

prompt += f"{label}) {content}\n"

prompt += "\nSelect the correct answer."

metadata = {

’year’: row[’year’],

’source_doc’: row[’source_doc’],

’question_num’: row[’question_num’],

’question_type’: row[’question_type’],

’section_num’: row[’section_num’],

’correct_answer’: correct_answer_after_shuffle,

’original_answer’: original_answer,

’shuffled’: shuffle,

’manual_review’: False

}

return prompt, metadata

def generate_numerical_prompt(row):

"""Generate prompt for numerical answer SAT questions"""

question = row[’question’]

prompt = f"""You are solving an SAT math question that requires a numerical answer.

Question:

{question}
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Give the numerical answer.

For ranges, use standard mathematical notation like ’1 < x < 3’ or ’x > 5’.

For single numbers, provide the exact value."""

metadata = {

’year’: row[’year’],

’source_doc’: row[’source_doc’],

’question_num’: row[’question_num’],

’question_type’: row[’question_type’],

’section_num’: row[’section_num’],

’correct_answer’: row[’answer’],

’shuffled’: False,

’manual_review’: True

}

return prompt, metadata
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