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Abstract

Introduction: Standardized test score trends are widely used to track student

performance and inform policy, but they are difficult to interpret when exam

content changes over time. We introduce an artificial test-taker framework

that uses a fixed large language model as a stable benchmark to measure

SAT Math difficulty drift and construct difficulty-adjusted measures of student

performance.

Methods: We built a longitudinal SAT Math item bank from SATs spanning

2007–2023. For each year, we generated 50 bootstrapped SAT forms that

match the year-specific section blueprint and administered all items to GPT-4

under a fixed set of parameters and training to develop counterfactuals. We

combine our difficulty benchmarks with national SAT Math scores released by

the College Board to assess robustness to compositional changes.

Results: The artificial test-taker framework indicates a statistically significant

decline in SAT Math difficulty of 0.21σ relative to 2012. After adjusting for

test difficulty using the transformed-control benchmark, student performance

declines by 34 points in Average Difference in Scores (ADS) from 2012 to 2023.

Heterogeneity analyses show that these declines are not uniform across racial

groups.

Discussion: Artificial test-takers provide a scalable, protocol-invariant audit

of longitudinal comparability when traditional equating is infeasible, opaque,

or incomplete. Our findings imply that evolving SAT Math content can mask

substantial underlying performance decline and can differentially obscure

trends across student subgroups. More broadly, transformed-control designs

using AI offer a tool for benchmarking educational outcomes and for sepa-

rating changes in measured performance from changes in the measurement

instrument itself.
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1 Introduction

The Scholastic Aptitude Test (SAT) has long been central in U.S. college admissions,

and researchers often use SAT scores to study educational outcomes, inequality and

labor market outcomes (Card and Rothstein, 2007; Hoekstra, 2009). Despite the

wide usage of standardized tests – such as the SAT – as a key metric for track-

ing student preparedness over time, interpreting trends naively can be misleading if

changes in exam difficulty are not accounted for as SAT itself is not a static instru-

ment – its content and difficulty can evolve over the years. When such comparability

fails, raw score trends can systematically overstate or understate changes in under-

lying performance. Large-scale testing programs attempt to preserve comparability

through linking and equating: statistical procedures that place scores from different

forms onto a common scale so that they can be interpreted interchangeably (Kolen

and Brennan, 2014; Holland and Dorans, 2006). Since forms differ in difficulty, the

relationship between raw and scaled scores must be adjusted so that a given scaled

score reflects the same performance level regardless of test date. This is the prin-

ciple behind the College Board’s public description of equating for the SAT, which

explicitly frames equating as ensuring that “a score . . . means the same regardless

of when the student took the test” (College Board, 2019). In practice, however,

equating and linking rest on strong requirements—most notably that forms measure

the same construct and that the linking relationship is sufficiently invariant across

populations and contexts—and these requirements can be stressed when tests and

testing populations evolve (Michaelides, 2010; Guo et al., 2017).

A central threat to longitudinal comparability is drift : changes in items and con-

struct representation over time. Even in well-run programs, items can become easier

with exposure, change in ways that interact with curriculum and preparation, or

shift in difficulty when the cognitive demands of the test evolve. Modern psychome-
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tric work therefore treats drift as an empirical object that must be monitored, using

statistical detection approaches designed for repeated or continuous testing environ-

ments (Guo et al., 2017; Lee and Lewis, 2021; Kang, 2023). Importantly, drift can

matter even when operational equating is performed, because equating can only cor-

rect difficulty differences under the assumptions that justify the linking relationship

and under the information available such as anchor items, recycled questions, and

the representativeness of the linking design.

These issues are especially salient for the SAT over the past decade. The test

has experienced consequential design changes, including the 2016 redesign1 (College

Board, 2016), while the surrounding admissions and participation environment has

also shifted, particularly during the rapid expansion of test-optional policies in the

COVID-19 era (Belasco et al., 2015; Bennett, 2021). At the same time, broader

national indicators suggest that U.S. mathematics performance has declined in the

pandemic period, including declines documented in NAEP long-term trend reporting

(National Center for Education Statistics, 2023, 2024b,a). In this setting, interpret-

ing SAT score trends requires separating at least two moving parts: (i) changes in the

difficulty and construct representation of the SAT Math instrument, and (ii) changes

in the performance and composition of the student population taking the test.

A practical obstacle is that researchers outside the testing agencies typically do

not observe the operational equating and item-monitoring processes. Traditional

equating designs rely on common anchor items or common examinees; these designs

are difficult to implement for long-run audits when anchor items are proprietary and

when it is challenging to administer historical forms to a stable sample of human ex-

aminees (Holland and Dorans, 2006). The common test-taker design is conceptually

attractive because it reuses examinees rather than items, but it is rarely feasible at

scale in high-stakes settings (Liu et al., 2025). As a result, applied research often

treats SAT scores as directly comparable across years by assumption—an assumption

that is convenient, but not always theoretically or empirically warranted when the

instrument and participation context are changing.

In this paper, we introduce an artificial test-taker framework that uses a fixed

1Changes include no negative marking and restructuring of sections.
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large language model (LLM) as a stable benchmark to quantify SAT Math diffi-

culty drift and to construct difficulty-adjusted measures of student performance.

Conceptually, our design can be understood as a fixed artificial test-taker equating

audit : instead of holding items constant via anchors, we hold the examinee constant

by repeatedly administering year-specific SAT Math content to the same artificial

participant under invariant testing conditions. This produces a benchmark series

capturing how difficult each year’s form would be for a constant “test-taker”, mak-

ing it possible to distinguish changes in the instrument from changes in observed

student scores. Methodologically, we then treat this benchmark as a transformed

control, analogous to synthetic control approaches (Abadie and Gardeazabal, 2003),

so that the difficulty-adjusted difference between student outcomes and the bench-

mark provides an interpretable measure of performance net of estimated difficulty

drift (Callaway and Sant’Anna, 2021).

Our use of an LLM as the benchmark participant is motivated by two develop-

ments. The first is the rapid adoption of generative AI in assessment and educational

measurement: recent literature argues that generative AI can serve as a diagnostic

tool for item quality, validity evidence, and comparability, while also raising fairness

and transparency concerns (Swiecki et al., 2022; Hao et al., 2024; Kaldaras et al.,

2024; Bulut et al., 2024). The second is the emergence of methodological guidance

for using LLMs as research objects or research participants, emphasizing the need for

protocol specification, reproducibility, prompt transparency and careful reporting of

model versioning and parameters (Chang et al., 2024; Abdelkarim et al., 2025; Zhao

et al., 2025; Abdurahman et al., 2025). In line with these principles, we hold model

version, prompting, and decoding fixed and treat each test-taker response as an in-

dependent interaction. We also conduct alignment and robustness analyses to assess

whether model-perceived difficulty behaves in ways consistent with human difficulty

signals and to evaluate concerns such as memorization.

Empirically, the artificial test-taker indicates a statistically significant decline

in SAT Math difficulty of approximately 0.21 standard deviations relative to 2012.

Accounting for this difficulty drift materially changes the interpretation of score

trends. After difficulty adjustment, we estimate a larger decline in student per-
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formance: about 34 SAT Math points from 2012 to 2023. We interpret these as

difficulty-adjusted observational differences, as our design controls for estimated test

difficulty drift but cannot fully eliminate confounding from shifts in participation or

student composition, which are particularly plausible in the test-optional era (Belasco

et al., 2015; Bennett, 2021). Our heterogeneity analysis reveals that these difficulty-

adjusted declines in student performance are not uniform across racial groups.

By making the comparability problem explicit and by utilizing an artificial test-

taker when traditional equating is infeasible or incomplete, we contribute to literature

in both educational measurement and applied AI that uses standardised scores for

inference. More broadly, transformed-control designs using AI offer a tool for bench-

marking educational outcomes and for separating changes in measured performance

from changes in the measurement instrument itself.

The remainder of the paper is structured as follows. Section 2 describes the SAT

data used in our study and the GPT-4 test-taking process. Section 3 outlines our

empirical strategy, including the transformed control method. Section 4 presents our

main findings on SAT difficulty and student performance trends along with hetero-

geneity analysis. Finally, section 5 concludes with a discussion of the implications of

our results for educational policy and future research.

2 Background & Data

2.1 SAT Questions

We constructed a question bank of SAT questions curated from a variety of online

sources specializing in SAT preparation. These sources gave access to an extensive

collection of past SATs. We gathered these tests in PDF format and stored them

in a secure digital repository, encompassing a chronological collection from 2012 to

2023.

We transcribed each SAT exam PDF into a dataframe containing the question

text, answer options for MCQs, source document, section and question numbers,

question type, and calculator policy. MCQs present a set of possible answers, re-
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quiring the test-taker to select the most appropriate option. Answer type allowed a

one-line input from the test-taker2.

Our final item bank contains 1,204 text-based questions from test forms spanning

2012–2023, representing 67% of all expected items. The remaining 33% of items

contained visual elements incompatible with text-only models. Coverage is stable

across years (range: 60–73%), suggesting no systematic temporal bias in which items

could be transcribed. This question bank was then used to administer multiple SATs

to the LLM by bootstrapping the examinations for each year. In order to stabilize

annual estimates, we ran 50 independent bootstraps per year under an identical

prompt and decoding protocol; all API calls were stateless and seed-controlled to

ensure independence across trials.

In 2016, the SAT underwent significant changes. The format shifted from a total

score of 2400 to 1600, aligning with the pre-2005 SAT format. The Math section

retained its value of 800 points. Importantly, the revision eliminated the penalty

for incorrect answers, encouraging students to attempt all questions without fear of

point deduction for incorrect guesses. Additionally, the Math section saw a reduction

in the number of sections from three to two and an increase in questions from 54 to

58. Before 2016, calculators were allowed for all math sections. Starting 2016, the

Math section included both a calculator-permitted and a no calculator section. It

is important to acknowledge these format changes and how they might impact our

study. For further details, refer to the supplementary materials.

2.2 Student SAT Score Data

1. National-level SAT scores data. The College Board publishes yearly U.S. level re-

ports summarizing SAT performance of the test-takers. The data from these reports

include average scores, total test-takers and standard deviation in the scores for the

mathematics test and the language and writing test. These reports are readily avail-

2Given high performing multi-modal AI models that accept visual prompts were not available
at the time of running this experiment, questions incorporating graphical elements (figures, charts,
diagrams) could not be transcribed for analysis. This exclusion ensured compatibility with the
text-only input capabilities of the GPT-4 class models.
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able year 2016 onwards, referred to as post period in our study, through the College

Board website. For the years prior to 2016, which we refer to as the pre period, we

collected the reports from the Internet Archive.

Figure 1: Average SAT Scores of test-takers

To account for the format change in the SAT exam in 2016, we used the concor-

dance table provided by the College Board to convert the average SAT scores for the

pre period to the post period. The concordance table provided by the College board

is in multiples of 10. This requires rounding the average SAT score for exams in the

pre period to the nearest multiple of 10 before it can be mapped to the average SAT

score based on the concordance table. We used a linear model to interpolate the

average SAT scores, which we call the SAT Converted scores. Figure 1 shows the av-

erage SAT score of students by year, before and after the conversion, as well as after

using the linear interpolation. The green line represents the original average SAT
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scores for each year from 2012 to 2016. The blue line represents the converted score

obtained after rounding the scores in the green line to the nearest multiple of 10, and

then applying the conversion in the concordance table. The red line before the SAT

format change represents the converted score using the linear interpolation to match

the scores after the format change. The average SAT scores in red for each year from

2017 to 2023 remain unaltered and are directly available through the College Board

reports. After the conversion, we can see that the mean SAT score decline in the post

period compared to the pre period. Figure 1 suggests that students are doing worse

in the post period exams than the pre period exams, which also includes a significant

Covid-19 effect. However, this is under the assumption that the underlying exam

did not change in difficulty.

2. State-level SAT scores data. For state-level SAT reports from 2016 onwards,

we directly accessed the state-level reports available on the College Board’s website.

These reports provide comprehensive insights into the SAT performance of students

on a state-by-state basis, enabling a detailed examination of trends and patterns in

SAT scores across the United States. However, the availability of state-level SAT data

prior to 2016 posed a unique challenge. To procure this historical data for the pre

period (2012-2016), we used the Internet Archive. All human data are aggregate; no

identifiable records were accessed; generative AI was used as an experimental agent,

not as an author (separate disclosure provided).

3. District-level SAT scores data. We used publicly available school district level

SAT data for the state of Massachusetts from the Massachusetts Department of Ed-

ucation. The data are available for all the school districts in the state for each year

from 2004. The number of test-takers, the average reading, writing and mathemat-

ics scores are provided by school district for a given academic year. We identified

228 unique school districts commonly present over all the years considered in the

study. For further details, refer to the supplementary materials. We present two

national views—(i) population-weighted national reports and (ii) a state unweighted

average—and additionally a district-level panel (Massachusetts) to check robustness

to composition.
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2.3 Artificial participant

We used GPT-4-0125-preview as the artificial participant with fixed decoding (tem-

perature = 0, max tokens = 100); calls were executed in January–February 2024.

Each year’s evaluation comprised 50 bootstraps, each sampling a balanced SAT

exam from our question bank from each year; outputs captured include final answer,

correctness. Chain-of-thought was disabled, and answers were formatted determin-

istically for machine scoring. No further use of AI was made beyond this evaluation

in the analysis.

3 Empirical Strategy

In order to estimate the change in difficulty of the SAT math section relative to

the baseline period, we extend the principles of Synthetic Control by Abadie and

Gardeazabal (2003). LLMs like OpenAI’s ChatGPT have revolutionized Natural

Language Processing (NLP) tasks. Here, the transformed control is built by holding

the test-taker fixed (GPT-4 under an identical protocol) and comparing year-to-year

performance on contemporaneous items, so the counterfactual uses each year’s own

SAT content and precludes extrapolation.

We do not explicate the LLMs further, Korinek (2023) and Dell (2024) provide

a comprehensive guide on their day-to-day use case. As these models are trained

on increasing amounts of human generated text data and are continually improved,

they become more adept at understanding and responding to queries. This progress

opens new and sophisticated applications for these models. We highlight one such

application within social sciences: what we refer to as transformed control in our

research design. The LLMs have been used for direct causal reasoning by Kiciman

et al. (2023), given a causal question to understand the models’ capacity to accurately

identify causal factors. Our approach is distinct from this procedure as we are using

the LLM to generate control group data to enrich the inference about the student

test-takers’ performance. Although the control in this design does not serve for

causal inference yet, it paves the way for incorporating modern AI tools into social
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science research.

The transformed control has similar advantages that are observed with synthetic

control methods highlighted by Cunningham (2021). Our method precludes extrapo-

lation, the comparison with student test-takers’ SAT outcomes is based on the LLM’s

performance in SAT questions from the same year. The counterfactual constructed

relies on questions students themselves faced in that year. The LLM does not learn

from previous attempts as each API call to the model is independent. This ensures

the LLM’s responses are not influenced by peeking at the student outcomes as each

evaluation of the SAT is independent. Instead, it uses the knowledge in its training

data to output an appropriate answer to the question provided. While standardized

tests have been used to identify trends in student performance over time, it is as-

sumed the underlying exam is uniformly challenging. Independently evaluating the

standardized tests would require significant logistical undertaking. The LLM can in-

stead act as the control and thus bridge the gap between qualitative and quantitative

research. In our experiment the LLM by OpenAI, GPT-4 is the control unit.

3.1 Scoring methodology

The section outlines the methodology employed to enable OpenAI’s models to answer

SAT questions. As illustrated in Figure 2a, we randomly sampled 50 SATs for each

year from the question bank using bootstrapping while maintaining identical number

of question types as per the SAT format of the given year. We then prompted

GPT-4 by OpenAI to take each of the 50 sampled exams for each year. Then, we

calculated the number of correct answers and their proportion (number of correct

answers divided by total questions) to assess the model’s performance and compared

the distributions obtained for different periods. We keep model version and decoding

fixed across all calls and treat each API call as stateless and independent, ensuring

protocol invariance across years.

First, we sample an SAT without replacement from our SAT Math Question

bank as in Section 2. Next, we proceed by selecting individual questions from the

sampled SAT exams, each of which is then presented to the GPT-4 model using a

10



carefully pre-formulated prompt. The structure of our prompt has been provided

in the supplementary materials. Once GPT-4 receives this API call, it provides

a response in a format specified by our prompt. The answer is then saved to a

dataset that keeps a record of all the questions that have been answered and their

corresponding answers. This process continues until all the questions in the sampled

exam have been exhausted. All the questions and answers associated with each exam

are compiled into a dataset. Once all the generated answers are collected, we convert

raw score to scaled SAT score and recenter for accurate comparison over time, as

described in Figure 2b and explained in Section 2.2.

The College Board accounts for variation in exam difficulty before scoring the

students’ performance within that year. As some students are likely to receive rel-

atively more difficult exams than their peers taking the exam in the same year, the

final score factors in the difficulty level to allow the accurate assessment of students

relative to students in the same peer group. The process of bootstrapping as de-

scribed generates exams within the year that include questions of varying difficulty,

mimicking the exams received by student test-takers. Thus, some sampled exams

are more difficult than others. Thereby, ensuring we evaluate the average SAT for a

given period.

3.1.1 Prompting

We employed a zero-shot prompt, meaning no example solutions were provided to

the LLM to facilitate answering the question. Further, we did not allow for chain-

of-thought. The LLM was proscribed from sequential reasoning. We use the same

model build [gpt-4-0125-preview] and unchanged prompting/decoding parameters for

all years evaluated. The question was provided through the prompt and the LLM

was asked to provide one character letter output for multiple choice questions and

the appropriate numerical or equation output for the answer type questions. The

prompting strategy remained identical over all periods, ensuring no bias through

the prompt. Since all prompts are independent API calls to the model, the LLM

had no memory of previous questions. The LLM therefore is tasked to answer each
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question independent of any other question or reference to the period from which

the question is gathered. This ensured the comprehensive evaluation of the difficulty

of the questions from appropriate periods. Structured outputs to refine the LLM

response were not available at the time of the study. Further prompting details and

GPT-4 model parameters are provided in the supplementary materials.

3.1.2 Question Embeddings and Difficulty Alignment

To ensure that the composition of SAT questions in our study accurately reflects the

intended distribution of difficulty levels, we perform a difficulty alignment analysis

to ensure no over- or under-representation of any particular difficulty type. Further,

having identified the difficulty of the questions across different years, we can assess

the performance of the LLM on questions of varying difficulty. Below, we describe

the methodology used and the results of this analysis 3.

For the exam years before 2014, the College Board provided difficulty ratings for

each question. These difficulty ratings were not provided by the College Board for

exams starting 2014, hence we predicted the difficulty rating using a machine learning

model. To avoid temporal leakage, training uses only preserved 2008–2011 items and

pre-2014 labels; 2015+ items are prediction-only and never used for training. The

difficulty rating of the question for the students was between 1 and 5, with 1 being

the easiest and 5 being the hardest. We used these ratings to study whether LLM’s

concept of difficulty aligns with the student test-takers. For this task, we used the

text-embedding-3-large model from OpenAI (Neelakantan et al., 2022). Embeddings

are a way to represent text as a vector in high dimension, which contains the semantic

meaning of the text. These embeddings show how the LLM identifies the text in its

internal representation and has been used for various language processing tasks (Xue

et al., 2018; Gao et al., 2019).

The embeddings created by the model are used as features to predict the dif-

ficulty of the questions. In addition, the SAT was a pencil and paper test for the

years considered in this study, and the difficult questions appear at the end of each

3We were able to use preserved SATs from 2008 to 2011, which were not a part of our final
results, but serve as training data for the machine learning model in this analysis.
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section. We use this information as an additional feature in the classification model

by including a progress bar as a numerical representation of the progress through the

section. To simplify the classification task, we group difficulty ratings 1 and 2 as easy

(310 questions), 3 as medium (265 questions), and 4 and 5 as hard (205 questions).

The model is trained on 80% of the data having balanced the classes and tested

on the remaining 20% of data. We also balance classes and report out-of-sample

performance on the held-out 20% split to verify alignment. Using a Random Forest

Classifier, the model achieves an accuracy of 0.789 on the testing data. Additional

details regarding the confusion matrix for the classification are available in supple-

mentary materials. The model is then used to predict the difficulty of the questions

in the SAT from 2015 to 2023.

Figure 3(A) displays the results, and highlights the proportion of easy, medium,

and hard questions in the bootstrapped SATs from each year. Further, the average

proportion of easy, medium, and hard questions in the complete SATs gathered

for the years 2008 to 2014 were 40%, 34% and 26% respectively. The proportion

of easy, medium, and hard questions in the bootstrapped SAT approximates the

average proportion in the complete SATs, suggesting that years 2015 onwards had

similar proportion of easy, medium, and hard questions when juxtaposed against the

preceding years. These results suggest that SATs from varying years had similar

proportions of easy, medium, and hard questions. This is important as it allows us

to compare the performance of the LLM across years without worrying about the

composition of the SATs.

Having predicted the difficulty of the questions, we use the predicted classes to

identify the change in performance of the LLM, i.e., the proportion of each question

type LLM is correctly answering over time. In Figure 3(B), we show the correct

response rate of the LLM for easy, medium, and hard questions. First, we notice

the LLM performs better on easy and medium difficulty questions compared to hard

questions for the years 2008 to 2014. The LLM’s lower accuracy rate on questions

rated difficult for student test-takers suggests a potential alignment in perceived

difficulty between students and the LLM. Additionally, while performance improves

across all difficulty levels over time, the most pronounced gains are observed for hard
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questions.

3.2 Reduced Form

For this study, we have two parameters of interest. First, we want to estimate

the change in difficulty of SAT math section. Second, after controlling for exam

difficulty, we want to estimate the change in performance of test-takers. We explain

our strategy to estimate each of these parameters below. We fix 2012 as baseline

and report changes relative to that year for both the model and students, so that

the Average Difference in Scores (ADS) compares like-for-like movements from a

common starting point.

1. Transformed Control. To estimate the change in difficulty of the SAT, we

formally consider the question bank Q of 1,204 SAT questions from the years 2012

to 2023. St is a collection of subsets of Q and each St contains randomly sampled

exams from the question bank Q without replacement, ensuring unique questions

populate each exam. Each exam Ej,t ∈ St and each Ej,t ⊂ Q, where j = 1, 2, ..., 50.

∀Ejt ∈ St,with t = {2012, 2013, ..., 2023} and where qijt is a question in exam Ejt,

we get

nmjt =

|Ejt|∑
i=1

χAqijt
(fm(qijt)) and pmtj =

nmjt

|Ejt|
,

nmjt is the number of questions answered correctly by model m, for exam j in

period t. pmjt is the proportion of questions answered correctly by model m ∈
{GPT-4 Turbo, Claude 3.5}, for exam j in period t. While we restrict this study to

GPT-4 model, we include results from other models in the supplementary materials.

|Ejt| is the cardinality of Ejt, which in our paper represents the number of questions

in exam Ejt. fm is some LLM based function that takes in a question as input

and provides an answer as output, depending on whether the answer is for MCQ or

answer-type question. χAqijt
is a characteristic function that is 1 if output from fm

is correct and 0 otherwise, depending on a set of correct answers Aqijt for question

qijt.
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From these performance evaluation measures nmjt and pmjt, we obtain the statistics

µmt and νmt, along with their respective standard errors σµmt and σνmt -

µm,t =
1

|St|

|St|∑
j=1

nmjt

νm,t =
1

|St|

|St|∑
j=1

pmjt

µmt is the mean number of questions answered correctly by model m in period t. νmt

is the mean proportion of questions answered correctly by model m in period t. |St|
is the cardinality of the set St, which is 50 for all time periods.

2. Performance Comparison. Our second parameter of interest is the change

in mathematical performance of the test-takers. To estimate this parameter, we

utilize the estimation procedure from multi-period difference-in-difference framework

as expounded in Callaway and Sant’Anna (2021). Next, we explain how we borrow

ideas and notation from Callaway and Sant’Anna (2021) to fit our empirical setting.

The LLM, GPT-4 is a fixed entity given the training and prompting technique

are held constant. If the test-takers did not change in composition, the expected

change in performance of the students in the SAT exam is the estimated change

in the underlying exam difficulty. We use the potential outcome notation for the

test-takers’ SAT score measurements, Yi,t(0) is potential i
th measurement in period

t for the unchanging test-takers. While Yi,t(g) is the actual outcome measured for

students. We formally define the jth exam score for the LLM taken in period t as

Tj,t. This allows us to construct a strong parallel trends assumption as the following,

E[Yt(0)− Yt−1(0)] = E[Tt − Tt−1], where 2012 < t ≤ 2023.

Since our transformed control is the unobserved parallel trend, the estimation

mimics treatment effect estimation in a classical difference-in-difference approach

without making causal claims. Additionally, under this parallel trends like assump-

tion, the expected change in the LLM’s score is the estimated change in difficulty of
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the SAT exam between the measurement periods. We borrow some notation from

the estimation procedure described by Callaway and Sant’Anna (2021) and adopt

for our use case. Our control provides a richer perspective about the difference in

student performance, we refer to this estimand as the Average Difference in Scores

(ADS).

ADS(t̂, t) = E[Yt(g)− Yt(0) | t̂ ]

In the above equation, Yt(0) is the unobserved potential outcome. However, when we

impose strong parallel trends, we can identify the ADS with reference to a baseline

year,

ADS(t̂, t) = E[Yt(g)− Yt(0) | t̂ ] + E(Yt̂(0)|t̂)− E(Yt̂(0)|t̂)

= E[Yt(g)− Yt̂(0)|t̂]− (E[Yt(0)− Yt̂(0)|t̂])

Now, notice that because we start at the same baseline, we have Yt̂(0) = Yt̂(g). So,

ADS(t̂, t) = E[Yt(g)− Yt̂(0) | t̂ ]− E[Yt(0)− Yt̂(0) | t̂ ]

= E[Yt(g)− Yt̂(g) | t̂ ]− E[Yt(0)− Yt̂(0) | t̂ ]

= E[Yt(g)− Yt̂(g) | t̂ ]− E[Tt − Tt̂ | t̂ ]

The above expression is identifiable as all the terms are observed. Hence, using

strong parallel trends like assumption and fixing the baseline at some t̂, we can

estimate ADS.

Our analysis is operationalized through a standard parametric linear regression

model that accommodates multi-valued discrete treatment variable, which can be

represented by the following regression equation:

∆Zi,t,s =
2023∑

t=2013

1{τi = t}γt +
2023∑

t=2013

1{τi = t} × 1{s = student}βt + ϵi,t,s

In our study, ∆Zi,t,s is the change in SAT score for unit i from the baseline year

2012, where s ∈ {student, LLM} and τi is the exam year of unit i. The parameter βt
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is the ADS(t̂, t) measuring expected change in test-takers’ math performance relative

to baseline 2012 controlling for the exam difficulty through the LLM.

4 Results

We first present the performance of GPT-4 in the SATs over the years. Next, we use

GPT-4’s performance as a control to estimate the changes in student performance.

4.1 Change in Difficulty of SAT Math Section

In evaluating GPT-4’s performance on SAT math sections, we accounted for the

varying number of questions in the pre format change (54 questions) and post format

change (58 questions) periods. To enable a fair comparison, we also analyzed the

proportion of correctly answered questions for each year, i.e., the ratio of number of

correct answers to total questions per exam over 50 bootstrap samples. This approach

ensures a normalized comparison despite the different total question counts. This

normalization lets us interpret year-to-year differences as changes in form difficulty

rather than artifacts of question counts.
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4.1.1 Average Performance of LLM on SATs

(A) Number of questions correctly an-
swered by LLM in SATs from each year

(B) % of questions correctly answered by
LLM in SATs from each year

(C) Scaled SAT scores for LLM in SATs
from each year

Figure 4: Performance of LLM on SAT exams over the years. Each point represents
the mean across 50 bootstrap samples per year. Shaded regions show 95% bootstrap
confidence intervals (2.5th–97.5th percentiles). Panel (A) shows raw correct answers,
(B) shows proportion correct, and (C) shows scaled SAT scores (converted to post-
2016 scale for years prior to 2017).

Figure 4(A) shows the raw number of questions correctly answered by the LLM in

the SATs from each year. The LLM’s performance is found to be increasing over

time. As there are 4 additional questions after the format change, it is challenging
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to interpret the raw number of questions correctly answered. Thus, Figure 4(B)

provides the corresponding percentage of questions correctly answered by the LLM

in the SATs from each year. Figure 4(C) provides the scaled SAT score which can

be benchmarked against maximum SAT score of 800. We use the concordance tables

provided by the College Board to recenter the scores before the format change as

described in Section 2. As shown, GPT-4’s performance is increasing over time.

Since 2012, the SAT has been declining in difficulty by roughly 4 points per year.

4.1.2 Dispersion over the years

We also analyze the dispersion of GPT-4’s performance relative to the average stu-

dent performance in 2012. This analysis provides insights into how the LLM’s perfor-

mance has evolved over time compared to the average student test-taker. Specifically,

we compared the performance of the LLM on the SAT to the national student score

distribution from 2012, using this fixed year as a baseline to assess the LLM’s rel-

ative standing. Additionally, we performed a year-by-year comparison, evaluating

the LLM’s performance relative to the national student score distribution for each

corresponding year. In both analyses, we quantified the gap between the LLM and

the average student in terms of the standard deviation of student scores, providing

a standardized measure of the difference in performance over time.
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(A) GPT performance relative to stu-
dent score in 2012

(B) GPT performance relative to Stu-
dent Score for each year

Figure 5: GPT performance relative to Student Scores

Figure 5(A) shows the performance of the LLM relative to the student score distri-

bution in 2012. As shown by this figure, the LLM’s average performance is deviating

further away from the average student performance over the years, and moving closer

to the right tail of the student score distribution4. In 2012, the gap between the LLM

and the average student was 0.02σ. However, by 2023, this gap increased to 0.6σ, and

the average over 12 years is 0.21σ relative to the base year of 2012. These standard-

ized gaps provide effect-size comparability and are computed using the 2012 student

SD (117) as noted.

Figure 5(B) shows the performance of the LLM relative to the student score distri-

bution for each year5. The gap between the LLM and the average student is also

increasing over time and even more pronounced, indicating that the LLM’s perfor-

mance is diverging from that of the average student. In 2012, the gap was 0.02σ,

and by 2023, it had increased to 0.8σ, with an average of 0.32σ over the 12 years.

4Mean student score in 2012 was 543 after concordance and standard deviation was 117. We
used the following formula:

µStudent,2012−µLLM,t

σStudent,2012

5We used the following formula:
µStudent,t−µLLM,t

σStudent,t
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4.2 Change in Student Performance

We begin by providing results for estimated ADS(t̂, t) for the baseline year 2012.

This gives us the relative change in the performance of average student test-taker,

having controlled for the SAT difficulty using transformed control. We perform

this comparison at the national level using both the population performance data

provided by the College Board and the state-by-state unweighted average SAT scores

to replicate a representative national sample. For the state of Massachusetts, we use

the school district-level SAT scores to estimate ADS.

Figure 6(A) shows the estimated ADS, which gives us decline in SAT scores of

student test-takers after controlling for exam difficulty. From this figure, we notice

that the average performance of the test takers declined by 34 points from 2012 to

2023. Table 1 summarizes the main results: GPT-4’s score increased by 59.8 points

(SE = 4.68) from 2012 to 2023, while student scores declined by 35 points (SE =

0.13), yielding an ADS of 94.8 points (SE = 4.68). This indicates that the difficulty-

adjusted decline in student performance is substantially larger than the raw score

decline suggests.

Table 1: Main Results: GPT-4 and Student SAT Math Performance (2012–2023)

Year GPT-4 Score (SE) Student Score (SE) ADS (SE)

2012 546.2 (3.40) 543 (0.09) 0.0 —
2016 553.0 (2.27) 537 (0.10) 12.8 (4.09)
2020 597.2 (3.16) 523 (0.08) 71.0 (4.64)
2023 606.0 (3.21) 508 (0.09) 94.8 (4.68)

Change (2012 → 2023)
+59.8 (4.68) −35 (0.13) +94.8 (4.68)

Notes: GPT-4 scores from 50 bootstrap samples per year (SE = SD/
√
50). Student

scores are national population means converted to post-2016 scale. ADS = (GPT-4
change) − (Student change), relative to 2012 baseline.

We used the state-by-state unweighted average SAT scores to construct a repre-

sentative national sample along with the national population data provided by the
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College Board. The ADS using both samples are shown in Figure 6(B) along with the

district-level scores for the state of Massachusetts. Figure 6(C) shows the estimated

ADS for Asian, Black and White students. White students show the largest decline

in average performance of 33 SAT points, while Black and Asian students declined

by 25 and 15 points. The College Board reports do not have consistent demographic

information over the period considered for Hispanic students, we therefore considered

the most consistent demographic breakdown of the SAT scores present in the report.

These results highlight key trends; state-by-state unweighted SAT data generally

mirrors national population trend. Massachusetts presents a slightly different nar-

rative, with changes in SAT scores that often align with national trends but with

some exceptions. For instance, the decline in Massachusetts is less pronounced in

certain years, indicating possible state-specific factors that might have cushioned

the impact. Overall, we find a notable difference in performance of the LLM and

the performance of test takers, with LLM’s performance improving and student per-

formance declining over time. These estimates are qualitatively invariant between

the national population, the state unweighted average, with Massachusetts serving

as a district-panel check that largely follows the national trend. Taken together, a

steady easing in form difficulty coupled with a difficulty-adjusted decline in student

performance underscores the value of an artificial test-takers’ benchmarking when

comparing cohorts over time.

4.3 Robustness Checks

We conduct several robustness checks to address potential concerns about our

methodology.

Memorization Test. A key concern is whether GPT-4’s improving performance

reflects memorization of older SAT items that may appear in its training data (cut-

off: September 2021). To address this, we administered paraphrased versions of 203

questions from years 2011, 2015, 2019, and 2023 to the same model. If memorization

drove performance, paraphrasing should substantially reduce accuracy. Instead, as

shown in Figure 7(A), we find only a 3.9 percentage point drop in accuracy (64.0%

22



to 60.1%), and crucially, the correlation between original and paraphrased accuracy

across years is r = 0.991. This near-perfect preservation of the temporal trend

strongly suggests GPT-4 is solving problems rather than retrieving memorized an-

swers.

2016 Format Change. The SAT underwent a major redesign in 2016. To test

whether this format change confounds our difficulty estimates, we conducted an

event study examining whether a discrete jump occurs at the 2016-2017 boundary.

As shown in Figure 7(B), the jump coefficient is statistically insignificant (β = −9.82,

SE = 11.96, p = 0.433), indicating no discontinuity at the format change. The

difficulty trend is smooth across the redesign, suggesting our results are not artifacts

of format differences.

Question Type Consistency. We examine whether the difficulty trend is driven

by particular question types. Both multiple choice questions (MCQ) and student-

produced response (grid-in) questions show nearly identical improvement: MCQ

accuracy increased by 21.4 percentage points (43.6% to 65.0%) and grid-in accuracy

increased by 21.4 percentage points (37.8% to 59.2%) from 2008 to 2023. This con-

sistency across question formats supports the robustness of our difficulty estimates.

Calculator vs No Calculator. The post-2016 SAT introduced a distinction be-

tween calculator-permitted and no-calculator sections. We assess the possibility that

calculator policies might drive difficulty trends and find an insignificant performance

difference: GPT-4 achieves a mean accuracy of 59.5% (SD = 4.8%) on Calculator

sections versus 56.9% (SD = 5.8%) on No Calculator sections. The relatively small

gap (∼2.6 percentage points) in accuracy suggests that calculator policies are not a

primary driver of the observed difficulty decline.

Difficulty Composition. Using a Random Forest classifier trained on pre-2014 Col-

lege Board difficulty labels, we examine whether the composition of easy, medium,

and hard questions changed over time. As shown in Figure 3, we find modest com-

positional drift: the proportion of hard questions shows a positive trend (r = 0.62),

while easy questions show a negative trend (r = −0.44). However, the year-to-year

variance is small (0.001–0.002), and there is no abrupt change at 2016, suggesting

difficulty composition changes are gradual rather than discrete.
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5 Discussion and Conclusion

Standardized tests are routinely used to track performance trends, study inequality

and downstream outcomes, but such comparability is reasonable only when the mea-

surement instrument is stable or when test forms are credibly linked onto a common

scale. In psychometric terms, linking and equating are intended to preserve score

comparisons across administrations by adjusting for form difficulty, such that the

same reported score corresponds to the same performance level (Kolen and Brennan,

2014; Holland and Dorans, 2006). However, when the conditions that justify these

adjustments are stressed—because the assessment evolves, populations shift, or an-

chor information is unavailable—raw score trends can misstate changes in underlying

performance (Michaelides, 2010). We study this comparability problem directly by

introducing an “artificial test-taker” benchmark that makes difficulty drift measur-

able, and by using our benchmark as a transformed control to help separate changes

in measured performance from changes in the measurement instrument.

Our primary result suggests that SAT Math difficulty is not constant over time,

as measured by a fixed artificial participant exposed to year-specific items under

invariant testing conditions. Two features of this benchmarking result are particu-

larly consequential for interpretation. First, the benchmark changes are systematic

rather than idiosyncratic, suggesting a time pattern consistent with drift rather than

noise. Second, the benchmark is constructed by holding the test-taking protocol

fixed, which clarifies that the estimated drift is driven by differences in test content

rather than changes in the agent’s “testing environment”. These findings align with

the broader measurement literature that treats item drift as an empirical object to

be monitored, not an assumption to be taken for granted (Guo et al., 2017; Lee and

Lewis, 2021; Kang, 2023).

Our second key result uses the benchmark series to re-express observed student

score trends after adjusting for test-difficulty. We find that the difficulty-adjusted

decline in student performance is larger than as suggested by the raw score decline,

implying that raw score trends that do not account for evolving exam difficulty

may understate the decline in student performance. This mismeasurement is likely
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complicated by concurrent shifts in student participation due to widespread test-

optional policies (Belasco et al., 2015; Bennett, 2021). More broadly, recent work on

assessment in the age of generative AI emphasises that the deployment of AI tools

can both reveal and obscure inequities, depending on transparency, validation, and

the interpretability of outputs (Swiecki et al., 2022; Kaldaras et al., 2024; Hao et al.,

2024; Bulut et al., 2024). Finally, our results also indicate that difficulty-adjusted

trends are not uniform across racial groups. The heterogeneity analysis underscores

that comparability is not only a psychometric concern but can also affect how trends

are perceived across subpopulations. In a setting where participation and incentives

may shift differentially across groups over time, group-specific trajectories should be

interpreted with care due to potential selection effects and changing composition of

test-takers (Card and Rothstein, 2007).

Although in this study we perform supporting analysis to show question difficulty

alignment between the LLM and the student test taker, the concept of alignment is

still up for exploration and debate among Machine Learning and AI researchers (Bai

et al., 2022; Ji et al., 2025). The LLM’s lower accuracy on questions that student

test-takers find difficult suggests that both the LLM and the test-takers perceive and

are challenged by similar aspects of the questions. There likely exist factors that are

influencing the LLM’s performance that also affect human difficulty perception, such

as question complexity and required reasoning skill. These factors can be further

explored to understand the alignment between the LLM and the test-takers, but is

beyond the scope of this study and may be an avenue for future research.

The LLMs in this study were not tuned to operate as a typical high school test

taker; imbuing the LLMs with such a personality could offer stronger alignment.

Further psychometric analysis of the LLM’s performance on the SAT may provide

insights into the detailed performance of the LLM. Multimodal AI models with visual

inputs could analyze the SAT math section more thoroughly, these models were not

available at the time of this study. These models can analyze image input but

can misidentify the numerical data present in a graph or a chart, which has to be

prompted separately adding to the complexity. While the National Assessment of

Educational Progress (NAEP) has also noted a decline in math performance in recent
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years (National Center for Education Statistics, 2023) and a widening academic

achievement gap between the rich and the poor (Reardon, 2018), the NAEP questions

and the American College Testing (ACT) questions were not available to perform a

similar comparative study. Despite these hindrances, our study provides a template

for the use of AI as an artificial test-taker to develop counterfactuals for evaluating

long-term trends in educational outcomes. As agentic and fine-tuned AI models

continue to improve, they will enable increasingly better approximations of human

test-taking behavior, ultimately yielding more robust counterfactuals for longitudinal

educational research.
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(a) GPT-4 Answering (b) GPT-4 Scoring

Figure 2: GPT-4 Data Processing Flowcharts
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(A) SAT Difficulty Consistency

(B) Accuracy Rate by Question Difficulty

Figure 3: Question Difficulty Alignment
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(A) Estimated ADS(t̂, t), National Pop-
ulation

(B) Estimated ADS(t̂, t)
(C) Estimated ADS(t̂, t) for Asian,
Black and White Students

Figure 6: Estimated Average Difference Scores (ADS) relative to 2012 baseline.
ADS = (GPT-4 change from baseline) − (Student change from baseline), measuring
difficulty-adjusted student performance change. Panel (A) uses national population
data (n > 1.5 million test-takers per year). Panel (B) compares national population,
state unweighted average (n = 51 states), and Massachusetts district panel (n =
228 districts). Panel (C) shows heterogeneity by race. Error bars represent 95%
confidence intervals from bootstrap simulation (100,000 draws from t-distributions).
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(A) Paraphrasing Validation (B) Event Study: 2016 Format Change

Figure 7: Robustness checks. Panel (A) shows the correlation between GPT-4 accu-
racy on original vs. paraphrased questions (r = 0.991), indicating temporal trends
are preserved when surface text is altered. Panel (B) shows an event study at the
2016 SAT redesign; the jump coefficient is −9.82 (SE=11.96) and is statistically in-
significant (p = 0.433), confirming no discrete discontinuity at the format change.
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Appendix

Appendix A: Concordance Tables

The concordance tables provided below come directly from the College Board. We
utilize these concordance tables in our paper for 2 types of score conversions: con-
verting raw to scaled score and converting old to new score. The table below shows
the conversion tables utilized by our study.

Appendix B: Data Sources

After collecting the PDF files, we transcribed each SAT exam PDF into a struc-
tured comma-separated values (CSV) file. MCQs present a set of possible answers,
requiring the examinee to select the most appropriate option. Answer type allowed
a one-line input from the examinee.

The College Board provides yearly reports with the population level SAT perfor-
mance by the cohort of high school students taking the SAT exam. The data from
these reports include average scores, total test takers and standard deviation in the
scores for the mathematics test and the language and writing test. The concordance
table provided by the College board requires rounding the average SAT score for
exams in the pre period to the nearest multiple of 10 before it can be mapped to the
average SAT score based on the concordance table. Due to this, the direct conversion
of SAT scores using the concordance table has certain limitations. For example, if an
average SAT score is 514 in the year 2009 and the score is 515 in the year 2010, 514
would be rounded to 510 and 515 would be rounded to 520, before the concordance
table can be used. To avoid this problem, we used a simple linear regression model to
regress average SAT scores before and after the conversion in the concordance table
and then linearly interpolate the average SAT scores, which we call the Concordance
SAT scores.

Negative marking

As previously stated, our study spans two eras, 2008-2016 known as pre and 2017-
2023 known as post period. During pre period, the exams implemented negative
marking, unlike the 2017-2023 period. In analyzing the GPT models’ performance,
we opted not to apply negative scoring for incorrect responses when converting from
raw score to scaled score. This decision might initially suggest an inflated assessment
of GPT performance in the pre period, as measured by scaled SAT scores. However,
as our forthcoming sections demonstrate, incorporating negative marking for this
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Table E.2: Concordance Tables for raw-to-scaled and pre-to-post score conversions

Post Pre Pre Post

Raw Score Scaled Score Raw Score Scaled Score Scaled Score: Old Scaled Score: New

58 800 54 800 200 200
57 790 53 790 210 220
56 780 52 760 220 230
55 760 51 740 230 250
54 750 50 720 240 260
53 740 49 710 250 280
52 730 48 700 260 300
51 710 47 690 270 310
50 700 46 680 280 330
49 690 45 670 290 340
48 680 44 660 300 350
47 670 43 650 310 360
46 670 42 640 320 360
45 660 41 640 330 370
44 650 40 630 340 380
43 640 39 620 350 390
42 630 38 610 360 400
41 620 37 600 370 410
40 610 36 590 380 420
39 600 35 590 390 430
38 600 34 580 400 440
37 590 33 570 410 450
36 580 32 560 420 460
35 570 31 550 430 470
34 560 30 540 440 480
33 560 29 540 450 490
32 550 28 530 460 500
31 540 27 520 470 510
30 530 26 510 480 510
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Table E.3: Concordance Tables for raw-to-scaled and pre-to-post score conversions
(continued)

Post Pre Pre Post

Raw Score Scaled Score Raw Score Scaled Score Scaled Score: Old Scaled Score: New

29 520 25 500 490 520
28 520 24 490 500 530
27 510 23 480 510 540
26 500 22 480 520 550
25 490 21 470 530 560
24 480 20 460 540 570
23 480 19 450 550 570
22 470 18 440 560 580
21 460 17 430 570 590
20 450 16 420 580 600
19 440 15 420 590 610
18 430 14 410 600 620
17 420 13 400 610 630
16 410 12 390 620 640
15 390 11 380 630 650
14 380 10 370 640 660
13 370 9 360 650 670
12 360 8 350 660 690
11 340 7 330 670 700
10 330 6 320 680 710
9 320 5 310 690 720
8 310 4 290 700 730
7 290 3 280 710 740
6 280 2 260 720 750
5 260 1 240 730 760
4 240 0 220 740 760
3 230 -1 200 750 770
2 210 -2 200 760 780
1 200 770 780
0 200 780 790

790 800
800 800
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period would likely have amplified the performance discrepancy between the two
periods. Therefore, our analysis likely presents a conservative estimate, potentially
downplaying the actual performance gap.

Syllabus change

Although SAT math section did not experience a major change in structure and
syllabus as compared to the verbal section, we must emphasize certain differences
in exam content between the two periods. Before 2016, the key focus areas were
arithmetic, numbers and operations, algebra, functions, geometry and data analysis.
Starting 2016, SAT exam expanded the range of topics further and included ques-
tions related to trigonometry and complex numbers. Also, there was a greater focus
on data analysis, graphs and word problems and less emphasis on geometry-related
questions. Furthermore, starting 2016, students started received sub-scores for sec-
tions labeled as Heart of Algebra, Passport to Advanced math and Problem Solving
and Data Analysis. There were no such subsections before 2016. Just by looking at
the syllabus, one could argue that the math section became harder than before as it
covered the number of topics covered increased, along with their difficulty level.

Data Sources

These reports provide comprehensive insights into the SAT performance of students
on a state-by-state basis, enabling a detailed examination of trends and patterns in
SAT scores across the United States. However, the availability of state-level SAT
data prior to 2016 posed a unique challenge. To procure this historical data for the
pre period (2008-2016), we used the Internet Archive and the National Center for
Education Statistics. This digital archive, renowned for its extensive collection of
web pages archived over time, proved instrumental in retrieving past state-level SAT
reports not readily accessible on the College Board’s current website. Utilizing this,
we systematically sourced and compiled state-level SAT score reports for each year
from 2008 to 2016. This approach of combining current and archived data sources
ensures a comprehensive and continuous dataset spanning the entire duration of our
study period.

Data Cleaning and Recentering

The distribution of the average scores for these school districts is provided in Figures
8a and 8b, which show the distribution of average scores before and after the recen-
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tering using the concordance tables from the pre period to match the post format
change period.

(a) Before Conversion (b) After Conversion

Figure 8: SAT Score Distribution for School Districts in Massachusetts

Appendix C: Prompting

OpenAI provides access to their GPT series models through Application Program-
ming Interface (API) endpoint. In this study, we used the most advanced model
available GPT-4 . This model has been bench marked by OpenAI to be performing
at the 89th percentile on SAT mathematics under certain prompting conditions as
seen in OpenAI (2023a). For the purposes of this study, we employed a prompting
strategy with explicit system level instructions to return the appropriate character
letter corresponding to the correct answer having analyzed the question provided.
Prompting strategies can affect the performance of the model as described by Nunes
et al. (2023). Since, we are concerned with change in the LLM agent performance
over time with reference to baseline, any idiosyncratic LLM effects and prompt ef-
fects cancel out. We employed a zero-shot prompt, by which, no examples solutions
were provided to the model to facilitate answering the question. Further, we did
not allow for chain-of-thought. The model was proscribed from sequentially reasons
itself to the appropriate answer. The question was provided through the prompt
and the model was asked to provide one character letter output for multiple choice
questions and the appropriate numerical or equation output for the answer type
questions. The prompting strategy is identical over all periods, ensuring there is no
bias through the prompt. Since all prompts are independent API calls to the model,
the model has no memory of previous questions. The model therefore is tasked to
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answer each question independent of any other question or reference to the period
from which the question is gathered. This ensured the comprehensive evaluation of
the difficulty of the questions from appropriate periods.

The important parameters concerning this process are the temperature of the
model and maximum token output limit. The temperature of the model governs the
randomness of the output, the parameter when set to 0 provides a consistent and
unwavering output from the LLM agent. This ensures the output from the LLM
agent is deterministic and repetitive by always selecting the most probable token
given the previous token. As the temperature is increased to higher levels, the agent
has additional creative license to provide more abstract outputs. Since all LLM
agents are predictive engines for the next token, higher temperature increases the
probability of less likely token being selected as the output. For the purposes of our
experiment and not to induce bias through the prompt temperature, we set it to 0.
The maximum token output parameter limits the LLM agent’s output. Since the
agent in our experiment is required to choose the correct multiple choice option or
provide straightforward numerical output, we limit the agent to 5 tokens, which is
roughly 15-20 characters.

Our prompt template is shown in Listing 1, it encapsulates the strategy employed
throughout the experiment. The LLM agent operates as an assistant to the user
and to illicit a response from this assistant, two level of prompts are used. The
system-level prompt is a high level instruction that the assistant is expected to
follow verboten, this gives necessary context to the LLM agent and appropriately
modulates its responses. For example, the LLM agent can be required to respond as
a Shakespearean character through the system-level instructions. This is less useful
in our case but provides the necessary platform to provide broad instructions to
the agent about the task it is undertaking. The user-level prompt then provides
the SAT question to the agent, the agent then responds to the output based on
the temperature and maximum token output limit. Once these prompts and model
parameters are held constant, we loop through the bootstrapped exams from each
year as shown in Figure 2b. This ensures our agent is neutrally evaluating the SAT
exam in the selected year while all other parameters are held constant.

Listing 1: SAT math Exam Instructions for GPT-4

@System=l e v e l prompt@
You are tak ing an SAT math exam which inc lude mu l t ip l e

cho i c e and answer type que s t i on s .
Determine the c o r r e c t answer .
Choose only ONE ’ charac t e r l e t t e r ’ r e sponse output
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cor re spond ing to the c o r r e c t answer from the opt ions
provided f o r mu l t ip l e cho i c e type .

Provide the appropr ia t e numerica l answer as r equ i r ed f o r
the answer type ques t i on without any un i t s o f

measurement .

@User=l e v e l prompt ( f o r mult ip le=cho i c e que s t i on s )@
You are provided with an SAT ques t i on enc l o s ed in t r i p l e

backt i cks , f o l l owed by mul t ip l e cho i c e opt ions .
‘ ‘ ‘ <Question>

<Options> ‘ ‘ ‘
P lease i d e n t i f y and return ONLY ONE l e t t e r cha rac t e r

cor re spond ing to the c o r r e c t opt ion .
Your re sponse output should only be ONE charac t e r l e t t e r

.

@User=l e v e l prompt ( f o r numerica l answer que s t i on s )@
You are provided with an SAT ques t i on o f numerica l type ,

enc l o s ed in t r i p l e back t i ck s . P lease determine and
return the c o r r e c t numerica l va lue or mathematical
exp r e s s i on .

‘ ‘ ‘ <Question> ‘ ‘ ‘
WARNING: Do not prov ide any exp lanat ions , c a l c u l a t i o n s ,

un i t s o f measurement , or add i t i ona l outputs .

Appendix D: Other LLMs

To ensure the robustness of our findings and to validate that our results are not
subject to the specific LLM used, we conducted additional tests using different ver-
sions of the LLM. We utilized the GPT-4 April update and another LLM, Claude
3.5 Sonnet, for this purpose. GPT-4 Turbo received an update on April 9th, 2024.
This update by OpenAI majorly improved the model performance (OpenAI, 2023b).
The results in the main text are from GPT-4 January update, and we provide the
results from GPT-4 April update. The results show a similar trend in the decline
of student performance over time. The decline in SAT scores is 113 points at the
national level in 2023 compared to 2008. The decline in SAT scores is 72 points at
the Massachusetts level in 2023 compared to 2008. Additionally, it can be noted
through Figure 9 that the performance of GPT-4 April tracks the GPT-4 January in
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evaluating underling SAT. The results are consistent with the main text and show a
decline in SAT math difficulty over time.

Next, we utilized Claude 3.5 Sonnet, a different LLM, to evaluate the SAT exams.
Claude 3.5 Sonnet is a LLM developed by Anthropic, a U.S based artifical intelligence
(AI) company. We used this model as model benchmarking performed by Anthropic
show similar performance results compared to OpenAI’s GPT-40 model (Anthropic,
2024). The results from Claude 3.5 Sonnet are also provided in Figure 9. In the
figure, we can clearly see that the initial and end point performance of Claude 3.5
Sonnet on the SAT exams is consistent with the performance of GPT-4 January and
GPT-4 April update. The overall trend of declining SAT scores from 2008 to 2023
was replicated by these runs, further strengthening our claim. This robustness test
demonstrates that our findings are consistent across different LLMs, provided that
the intelligence demonstrated by LLMs is comparable, and are not an artifact of the
specific LLM used in the initial analysis.

Figure 9: Change in Performance of GPT-4 April and GPT-4 January
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Appendix E: Additional Tables and Figures

Table E.4: Yearly Performance of LLM Agent by Question Type

Year All Questions Multiple Choice only Answer Type only

Estimate S.E. Estimate S.E. Estimate S.E.

2008 0.469 (0.008) 0.495 (0.009) 0.378 (0.018)
2009 0.473 (0.007) 0.459 (0.008) 0.523 (0.013)
2010 0.548 (0.006) 0.525 (0.007) 0.630 (0.013)
2011 0.560 (0.008) 0.555 (0.009) 0.578 (0.011)
2012 0.494 (0.008) 0.493 (0.009) 0.500 (0.014)
2013 0.523 (0.008) 0.546 (0.009) 0.445 (0.013)
2014 0.519 (0.006) 0.543 (0.008) 0.435 (0.013)
2015 0.502 (0.008) 0.517 (0.010) 0.448 (0.015)
2016 0.508 (0.005) 0.516 (0.006) 0.478 (0.007)
2017 0.574 (0.007) 0.603 (0.008) 0.474 (0.015)
2018 0.569 (0.005) 0.592 (0.006) 0.492 (0.009)
2019 0.592 (0.008) 0.630 (0.008) 0.462 (0.018)
2020 0.657 (0.007) 0.654 (0.008) 0.669 (0.015)
2021 0.619 (0.004) 0.578 (0.006) 0.762 (0.005)
2022 0.648 (0.005) 0.672 (0.006) 0.566 (0.011)
2023 0.675 (0.007) 0.699 (0.007) 0.592 (0.018)

Notes: This table reports the average proportion of questions correctly answered
by the LLM agent each year. The estimates and standard errors (S.E.) for the
proportion of questions correctly answered by question type are provided. The
estimates represent the ratio of correctly answered questions to the total number of
questions in that category of question type.
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Table E.5: Asian, Black and White Student SAT Score Changes

Year Asian Black White

Estimate S.E. Estimate S.E. Estimate S.E.

2009 3.595 (4.764) -1.326 (4.74) -2.493 (4.73)
2010 -22.978 (4.255) -29.926 (4.204) -33.027 (4.203)
2011 -24.386 (4.797) -36.367 (4.818) -39.425 (4.819)
2012 1.832 (5.099) -9.17 (5.039) -12.268 (5.001)
2013 -7.993 (4.945) -19.935 (4.881) -26.079 (4.899)
2014 -5.761 (4.599) -18.729 (4.609) -24.826 (4.623)
2015 1.808 (5.195) -12.163 (5.177) -17.219 (5.179)
2016 1.993 (4.331) -18.94 (4.295) -22.032 (4.329)
2017 -19.174 (4.988) -18.104 (4.88) -35.219 (4.969)
2018 5.208 (4.371) -15.736 (4.318) -29.852 (4.351)
2019 -2.59 (5.358) -31.52 (5.423) -43.61 (5.454)
2020 -38.206 (4.904) -65.152 (4.859) -80.246 (4.873)
2021 -10.403 (4.171) -44.337 (4.179) -59.447 (4.248)
2022 -32.568 (4.31) -62.526 (4.347) -79.617 (4.302)
2023 -52.988 (4.924) -86.969 (4.898) -103.99 (4.892)
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Table E.6: Male and Female Student SAT Score Changes

Year Male Female

Estimate S.E. Estimate S.E.

2009 -0.385 (4.766) -2.353 (4.725)
2010 -30.991 (4.248) -32.007 (4.207)
2011 -39.401 (4.847) -37.417 (4.84)
2012 -12.23 (5.051) -12.199 (5.055)
2013 -24.989 (4.923) -23.996 (4.891)
2014 -24.796 (4.688) -22.831 (4.581)
2015 -20.182 (5.176) -18.197 (5.152)
2016 -26.988 (4.35) -23.984 (4.292)
2017 -46.147 (4.863) -36.227 (4.925)
2018 -40.797 (4.357) -28.773 (4.299)
2019 -55.57 (5.359) -41.587 (5.356)
2020 -92.155 (4.91) -75.156 (4.913)
2021 -68.379 (4.234) -54.405 (4.151)
2022 -88.565 (4.349) -74.586 (4.293)
2023 -117.006 (4.897) -100.039 (4.876)

45



Table E.7: Yearly National and Massachusetts SAT Score Changes after removing
post-COVID years

Year National Massachusetts

Estimate S.E. Estimate S.E.

2009 -1.831 (5.495) 1.052 (3.208)
2010 -32.471 (5.495) -27.776 (3.208)
2011 -39.792 (5.495) -34.448 (3.208)
2012 -13.357 (5.495) -6.112 (3.208)
2013 -25.980 (5.495) -20.404 (3.208)
2014 -23.271 (5.495) -17.173 (3.208)
2015 -17.063 (5.495) -10.441 (3.208)
2016 -18.784 (5.495) -13.114 (3.208)
2017 -33.416 (5.495) -15.897 (3.208)
2018 -31.643 (5.495) -11.861 (3.208)
2019 -46.522 (5.495) -26.236 (3.208)
2020 -83.749 (5.495) -54.599 (3.208)

Notes: This table reports the decline after removing post-COVID years. The
national sample represented by the unweighted state SAT data.
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Appendix G: Question Embeddings and Difficulty Alignment

The difficulty of the questions is predicted using a Random Forest Classifier trained
on the question embeddings and question location within the section as features.
The Table E.8 provides the classifier accuracy for the test sample. The standard
error is calculated using the proportion of predicted difficulty rating for questions in
the bootstrapped SATs. It does not account for the uncertainty in the classifier for
the unseen data between 2015 and 2023.

Table E.8: Confusion Matrix: Classification Accuracy - Test Sample

Predicted/Ground Truth Easy Medium Hard
Easy 130 15 1
Medium 17 61 23
Hard 1 4 36
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